CRANY

Cray C and C++ Reference Manual

S-2179-71

© 1996-2000, 2002-2009 Cray Inc. All Rights Reserved. This document or parts thereof may not be reproduced in any form unless permitted by
contract or by written permission of Cray Inc.

U.S. GOVERNMENT RESTRICTED RIGHTS NOTICE
The Computer Software is delivered as "Commercial Computer Software" as defined in DFARS 48 CFR 252.227-7014.

All Computer Software and Computer Software Documentation acquired by or for the U.S. Government is provided with Restricted Rights.
Use, duplication or disclosure by the U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14 or DFARS 48 CFR
252.227-7014, as applicable.

Technical Data acquired by or for the U.S. Government, if any, is provided with Limited Rights. Use, duplication or disclosure by the U.S.
Government is subject to the restrictions described in FAR 48 CFR 52.227-14 or DFARS 48 CFR 252.227-7013, as applicable.

Cray, LibSci, and UNICOS are federally registered trademarks and Active Manager, Cray Apprentice2, Cray Apprentice2 Desktop,

Cray C++ Compiling System, Cray CX1, Cray Fortran Compiler, Cray Linux Environment, Cray SeaStar, Cray SeaStar2, Cray SeaStar2+,
Cray SHMEM, Cray Threadstorm, Cray X1, Cray X1E, Cray X2, Cray XD1, Cray XMT, Cray XR1, Cray XT, Cray XT3, Cray XT4, Cray XT5,
Cray XT5,,, Cray XT5m, CrayDoc, CrayPort, CRInform, ECOphlex, Libsci, NodeKARE, RapidArray, UNICOS/Ic, UNICOS/mk, and
UNICOS/mp are trademarks of Cray Inc.

GNU isatrademark of The Free Software Foundation. ISO is a trademark of International Organization for Standardization (Organisation
Internationale de Normalisation). O2 isatrademark of Silicon Graphics, Inc. SGI and Silicon Graphics are trademarks of Silicon Graphics, Inc.
TotalView is atrademark of TotalView Technologies LLC. UNIX, the “X device” X Window System, and X/Open are trademarks of The Open
Group in the United States and other countries. All other trademarks are the property of their respective owners.

The UNICOS, UNICOS/mk, and UNICOS/mp operating systems are derived from UNIX System V. These operating systems are also based in
part on the Fourth Berkeley Software Distribution (BSD) under license from The Regents of the University of California.

Portions of this document were copied by permission of OpenMP Architecture Review Board from OpenMP C and C++ Application Program
Interface, Version 2.0, March 2002, Copyright © 1997-2002, OpenMP Architecture Review Board.

Version 2.0 Published January 1996 Original Printing. This manual supports the C and C++ compilers contained in the Cray C++ Programming
Environment release 2.0. On all Cray systems, the C++ compiler is Cray C++ 2.0. On Cray systems with |EEE floating-point hardware, the C
compiler is Cray Standard C 5.0. On Cray systems without | EEE floating-point hardware, the C compiler is Cray Standard C 4.0.

Version 3.0 Published May 1997 This rewrite supports the C and C++ compilers contained in the Cray C++ Programming Environment release
3.0, which is supported on all systems except the Cray T3D system. On all supported Cray systems, the C++ compiler is Cray C++ 3.0 and
the C compiler is Cray C 6.0.

Version 3.0.2 Published March 1998 This para supports the C and C++ compilers contained in the Cray C++ Programming Environment
release 3.0.2, which is supported on all systems except the Cray T3D system. On all supported Cray systems, the C++ compiler is Cray C++
3.0.2 and the C compiler is Cray C 6.0.2.

Version 3.1 Published August 1998 This para supports the C and C++ compilers contained in the Cray C++ Programming Environment rel ease

3.1, which is supported on all systems except the Cray T3D system. On all supported Cray systems, the C++ compiler is Cray C++ 3.1 and

the C compiler is Cray C 6.1.

Version 3.2 Published January 1999 This para supports the C and C++ compilers contained in the Cray C++ Programming Environment release
3.2, which is supported on all systems except the Cray T3D system. On all supported Cray systems, the C++ compiler is Cray C++ 3.2 and

the C compiler is Cray C 6.2.

Version 3.3 Published July 1999 This para supports the C and C++ compilers contained in the Cray C++ Programming Environment release 3.3,

which is supported on the Cray SV1, Cray C90, Cray J90, and Cray T90 systems running UNICOS 10.0.0.5 and later, and Cray T3E systems
running UNICOS/mk 2.0.4 and later. On all supported Cray systems, the C++ compiler is Cray C++ 3.3 and the C compiler is Cray C 6.3.

Version 3.4 Published August 2000 This para supports the Cray C 6.4 and Cray C++ 3.4 releases running on UNICOS and UNICOS/mk operating
systems. It includes updates to para 3.3.

Version 3.4 Published October 2000 This para supports the Cray C 6.4 and Cray C++ 3.4 releases running on UNICOS and UNICOS/mk
operating systems. This para supports anew inlining level, inline4.

Version 3.6 Published June 2002 This para supports the Cray Standard C 6.6 and Cray Standard C++ 3.6 releases running on UNICOS and
UNICOS/mk operating systems.

Version 4.1 Published August 20, 2002 Draft version to support Cray C 7.1 and Cray C++ 4.1 releases running on UNICOS/mp operating
systems.

Version 4.2 Published December 20, 2002 Draft version to support Cray C 7.2 and Cray C++ 4.2 releases running on UNICOS/mp operating
systems.

Version 4.3 Published March 31, 2003 Draft version to support Cray C 7.3 and Cray C++ 4.3 releases running on UNICOS/mp operating systems.
Version 5.0 Published June 2003 Supports Cray C++ 5.0 and Cray C 8.0 releases running on UNICOS/mp 2.1 or later operating systems.
Version 5.1 Published October 2003 Supports Cray C++ 5.1 and Cray C 8.1 releases running on UNICOS/mp 2.2 or later operating systems.
Version 5.2 Published April 2004 Supports Cray C++ 5.2 and Cray C 8.2 releases running on UNICOS/mp 2.3 or later operating systems.
Version 5.3 Published November 2004 Supports Cray C++ 5.3 and Cray C 8.3 releases running on UNICOS/mp 2.5 or later operating systems.
Version 5.4 Published March 2005 Supports Cray C++ 5.4 and Cray C 8.4 releases running on UNICOS/mp 3.0 or later operating systems.
Version 5.5 Published December 2005 Supports Cray C++ 5.5 and Cray C 8.5 releases running on UNICOS/mp 3.0 or later operating systems.
Version 5.6 Published March 2007 Supports Cray C++ 5.6 and Cray C 8.6 releases running on Cray X1 series systems.

Version 6.0 Published September 2007 Supports the Cray C and Cray C++ 6.0 release running on Cray X1 series and Cray X2 systems.
Version 7.0 Published December 2008 Supports the Cray C and (Deferred implementation) C++ compilers running on Cray XT compute nodes.
Version 7.1 Published June 2009 Supports the Cray C and C++ compilers running on Cray XT compute nodes.

New Features

Cray C and C++ Reference Manual S-2179-71

Support Cray C++ compiler
Documented support of the Cray C++ compiler (Cray C++ Compiler on page 18).
Turn theinsertion of CrayPat function entry points tracing calls on or off.

Documented support of the-h [no] func_t race option (-h [no] func_trace on
page 35).

Change the forwarding of apr un utility and resource limits

Asof CLE 2.2, theapr un utility no longer forwards its user resource limits to each compute
node, except for RLI M T_CORE and RLI M T__CPU (Run Time Environment Variables on

page 63).
Indicate a preference for threading or no threading

Thel oop_info prefer_threadandl oop_i nfo prefer_nothread directives
indicate a preference for turning threading on or off for selected loops (I oop_i nf o
prefer_thread,prefer_nothread Directives on page 78).

Turn autothreading on or off

The - h] no] aut ot hr ead option enables or disables automatic threading (see - h

[no] aut ot hr ead on page 32). The aut ot hr ead and noaut ot hr ead directives turn
autothreading on and off for selected blocks of code (aut ot hr ead, noaut ot hr ead
Directives on page 73).

Turn off cache blocking

The-h cacheO option turns off cache blocking, including directive-based blocking (- h
cachen on page 38).

Control the generation of DWARF information.

The-h [no] dwarf option controls whether DWARF debugging information is generated
during compilation (- h [no] dwar f on page 33).

Revise- h | i st documentation
Added documentation of the- h | i st =d option (- h | i st on page 33).
Control the optimization of both OpenM P and automatic threading

The-h t hreadn option controls the optimization of OpenMP and autothreading (- h
t hr eadn on page 36).

Replace- h snpn option with- h t hr eadn

See-h t hreadn on page 36.
Enable or disable the generation of threadsafe code

See- h [no]threadsaf e on page 59.
Support AMD processors code named "shanghai" and "istanbul."

See- h cpu=target_system on page 57.

Contents

Introduction [1]

1.1 General Compiler Description
1.1.1 Cray C Compiler
1.1.2 Cray C++ Compiler

1.2 Related Publications

Invoking the C and C++ Compilers|[2]

2.1 CC Command

2.2 cc Command

2.3 Command Line Options

2.4 Standard Language Conformance Options
24.1-h[no]c99 (cc)

24.2-h[no] conf orm(CC,cc),- h[no] stdc (cc)

243-h cfront (CC .
24.4-h[no] parse_t enpl at es (CC
24.5-h [no] dep_nane (CC
24.6-h[no] excepti ons (CO
24.7- h[no] anachr oni sns (CC)
248-h new for _init (CO
249-h[no]tol erant (cc) .
24.10-h[no]Jconst _string literals (CC)
24.11-h[no] gnu

2.5 Template Language Options .
251-h sinple_tenplates (CC)
25.2-h[no] aut oi nstanti at e (CC
253-hone_instantiation_per_object (CO
25.4-h instantiation_dir=dirname(CC
255-h instantiat e=mode (CC
256-h[no]inplicitinclude (CC
257-hrenove_instantiation_flags (CO

S-2179-71

Page

17
17
17
18
18

19
20
20
21
22
22
22
23
23
23
23
23
24
24
24
25
27
27
27
27
28
28
29
29

Cray C and C++ Reference Manual

25.8-hprelink_| ocal copy (CO

259-hprelink _copy_if_nonlocal (CO

2.6 Virtual Function Options
26.1-h forcevthl (CC)
2.6.2-h suppressvt bl (CC)

2.7 General Language Options
2.7.1- h keep=file (CO)
272-hrestrict=args
273-h[no]cal chars
27.4-h[no] signedshifts

2.8 General Optimization Options
28.1-h[no]aggress
2.8.2-h [no] aut ot hr ead
2.8.3-h displ ay_opt
28.4-h [no] dwar f
2.85-h fusionn
286-h [no]intrinsics
287-hlist
2.8.8- h[no] negs
2.8.9-h [no] negnsgs
28.10-h[no]onp_trace
28.11-h[no] func_trace
2.8.12- h[no] overi ndex
28.13-h[no] pattern
2814-h profil e_generate
28.15-h threadn
28.16-hunrolln
2.8.17- Olevel

2.9 Automatic Cache Management Options
29.1-h cachen

2.10 Vector Optimization Options
2101-h vectorn

2.11 Inlining Optimization Options
2111-h ipan .
2.11.2-h i paf r omesource [source]
2.11.3 Combined Inlining

2.12 Scalar Optimization Options

Page

29
29
29
29
29
30
30
30
32
32
32
32
32
33
33
33
33
33
35
35
35
35
36
36
36
36
37
37
38
38
39
39
40
41

& &R

S-2179-71

Contents

Page

2.12.1-h[no]i nt erchange C e e e 43
2122-h scal arn e e 44
2123-h[no]zeroinc Lo 44
2.13 Math Options C e e e 44
2.131-h fpn s, 45
2.132-h mat herror C e s 47
214 Debugging Options L. 47
2.14.1- Glevel and - g s 47
2142-h[no] bounds(cc) oL L 48
214.3-h dir_check e e e e s 48
2144-h zero L 48
2.15 Compiler Message Optionso 48
2.151-h negl evel _n C e s 49
2152-h [no]message=n[:n...] 49
2153-h report=args s 49
2154-h[no]Jabort L. 50
2155-h errorlimt C e s 50
2.16 Compilation PhaseOptionso 50
216.1-E e e e e e e e 50
216.2-P e e e e e e e 51
2163-h feonly L Lo 51
2164-S e e e e e e e e 51
2165-cC e e e e e e e e 51
216.6-#,- ##,and - #H#H# L L Lo oL 51
2.16.7 - Wphase, " opt ..." C e 51
216.8-Y phase, dirname L. Lo 52
2.17 Preprocessing Options e e e e 52
2171-C e e e e e e e e 53
2.17.2- D macro[=def] C e s 53
2.17.3-h [no] pragma=nameg : name .. .] Ce e 53
217.4-1 incldir Lo e 54
2175-M e e e e e e e 55
2176-nostdinc L L L L Lo 55
217.7-U e e e e e e e e 55
2.18 Loader Options C e e e s 55
2.181-1 libname e e e e 56
2182-Lldir . . . L 56

S-2179-71 9

Cray C and C++ Reference Manual

2.18.3- o0 outfile
2.19 Miscellaneous Options
219.1-h cpu=target_system
2.19.2- h i dent =name
219.3-h keepfiles
2.19.4-h networ k=nic
2.19.5-h [no] onp .o
219.6-h prototype_intrinsics
219.7-h taskn
219.8-h [no]threadsafe
2.19.9- h upc (cc)
2.19.10-V
2.19.11 - X npes
2.20 Command Line Examples
2.21 Compile Time Environment Variables
2.22 Run Time Environment Variables
2.23 OpenMP Environment Variables

Using #pr agna Directives[3]
3.1 Protecting Directives
3.2 Directivesin Cray C++
3.3 Loop Directives
3.4 Alternative Directive Form: _Pr agna
3.5 General Directives
3.5.1[no] bounds Directive
3.5.2dupl i cat e Directive
3.5.3nessage Directive
3.5.4cache Directive
3.5.5cache_nt Directive
35.61 dent Directive
3.5.7[no] opt Directive e
3.5.8aut ot hr ead, noaut ot hr ead Directives
3.5.9 Probability Directives
3.5.10 weak Directive
3.6 Instantiation Directives
3.7 Vectorization Directives
3.7.1hand_t uned Directive
3.7.21 oop_i nf o Directive

10

Page

57
57
57
57
57
58
58
58
58
59
59
59
59
60
61
63
63

65
66
66
66
67
67
68
68
70
71
71
72
72
73
73
74
76
76
76
77

S-2179-71

Contents

Page

3731 ocop_info prefer_thread,prefer_nothreadDirectives 78
3.7.4nopat t er n Directive C e 78
3.75novect or Directive e e 79
3.7.6pernmutationDirective L. 79
3.7.7[no] pi pel i ne Directive C e 80
3.7.8 pr ef ervect or Directive C e e e 81
3.79pgo | oop_infoDirective 81
3.7.10saf e_addr ess Directiveo 81
3.7.11saf e _conditi onal Directive 83
3.7.12short | oop andshort | 00p128 Directives 84
3.8 Scalar Directives 84
3.8.1col | apse andnocol | apse Directives 84
3.8.2concurrent Directive L. L L. 85
3.83i nt er change andnoi nt er change Directives 86
3.8.4noreducti onDirective L. 86
3.8.5suppr ess Directive Lo 87
3.86[nojunrol | Directive 87
3.87[no] fusi onDirective 89
3.9 Inlining Directives C e e s 89
3.9.1cl one_enabl e, cl one_di sabl e,cl one_r eset Directives Coe e 90
39.2i nl i ne_enabl e,i nli ne_di sabl e,andi nl i ne_r eset Directives 90
393inline_al ways andi nl i ne_never Directives 92
Using OpenMP [4] 93
4.1 Deferred OpenM P Features e e e s 93
4.2 Cray Implementation Differences C e e e 94
42 1Pragmaso 94
4.2.1.1at omi ¢ Construct e e e 94
4212for Construct 4
42.13paral |l el Construct C e e e 4
4214privateClause 95
4215t hreadpri vat e Construct Ce e 95
4.2.2 OpenMP Library Routines 95
4.221onp_get _max_active_|l evel s() G 95
4.2.2.2onp_set _dynam c() C e e 95
4.2.2.30np_set _schedul e() C e e e 95
4.2240np_set _max_active_|l evel s() e e 95
4.2250np_set _nested() Ce e e e 96

S-2179-71 11

Cray C and C++ Reference Manual

4.2.2.60np_set_numthreads()
4.2.3 OpenM P Environment Variables

42310Ww _DYNAMC
4.2.3.20OVvP_NMAX_ACTI VE_LEVELS
4.2.3.3 OVP_NESTED
4.2.3.4 OVP_NUM_THREADS
4.2.3.5 OVP_SCHEDULE
4.2.3.6 OVP_STACKSI ZE
42370VP_THREAD LIMT
42380vP_WAI T_POLI CY

4.3 Compiler Options Affecting OpenMP

4.4 OpenMP Program Execution

Using Cray Unified Parallel C (UPC) [5]
5.1 Cray Implementation Differences
5.2 Compiling and Executing UPC Code

Using Cray C++ Libraries [6]
6.1 Unsupported Standard C++ Library Features

Using Cray C++ Template Instantiation [7]

7.1 Simple Instantiation

7.2 Prelinker Instantiation

7.3 Instantiation Modes

7.4 One Instantiation Per Object File
7.5 Instantiation #pr agnma Directives
7.6 Implicit Inclusion

Using Cray C Extensions [8]

8.1 Complex Data Extensions

8.2f ortran Keyword

8.3 Hexadecimal Floating-point Constants

Using Predefined Macros [9]

9.1 Macros Required by the C and C++ Standards
9.2 Macros Based on the Host Machine

9.3 Macros Based on the Target Machine

9.4 Macros Based on the Compiler

9.5 UPC Predefined Macros

12

Page

96
96
96
96
96
96
96
96
97
97
97
97

99
100
100

103
103

105
106
107
110
110
111
112

115
115
116
116

119
120
120
121
121
122

S-2179-71

Contents

Running C and C++ Applications [10]

Debugging Cray C and C++ Code [11]
11.1 Total View Debugger
11.2 Compiler Debugging Options

Using I nterlanguage Communication [12]
12.1 Calls between C and C++ Functions
12.2 Calling Fortran Functions and Subroutines from C or C++
12.2.1 Requirements
12.2.2 Argument Passing
12.2.3 Array Storage
12.2.4 Logical and Character Data
12.2.5 Accessing Named Common from C and C++
12.2.6 Accessing Blank Common from C or C++
12.2.7 Cray C and Fortran Example
12.2.8 Calling a Fortran Program from Cray C++

12.3 Calling a C or C++ Function from Fortran

Implementation-defined Behavior [13]
13.1 Messages
13.2 Environment
13.2.1 Identifiers
13.2.2 Types
13.2.3 Characters
13.2.4 Wide Characters
13.2.5 Integers
13.2.6 Arrays and Pointers
13.2.7 Registers
13.2.8 Classes, Structures, Unions, Enumerations, and Bit Fields
13.2.9 Quadlifiers
13.2.10 Declarators
13.2.11 Statements
13.2.12 Exceptions
13.2.13 System Function Calls
13.3 Preprocessing

Appendix A Using Libraries and the L oader
A.1Cray C and C++ Libraries

S-2179-71

Page

123

125
125
126

127
127
129
129
130
130
131
131
133
135
137
138

141
141
141
142
142
143
144
144
144
145
145
146
146
146
146
146
146

149
149

13

Cray C and C++ Reference Manual

A.2 Loader

Appendix B Using Cray C and C++ Dialects
B.1 C++ Language Conformance
B.1.1 Unsupported C++ Language Features
B.1.2 Supported C++ Language Features
B.2 C++ Anachronisms Accepted
B.3 Extensions Accepted in Normal C++ Mode
B.4 Extensions Accepted in C or C++ Mode

B.5 C++ Extensions Accepted in cf r ont Compatibility Mode

Appendix C Using the Compiler M essage System
C.1 Expanding Messages with the expl ai n Command
C.2 Controlling the Use of Messages
C.2.1 Command Line Options
C.2.2 Environment Options for Messages
C.23 ORI G_CVD_NAME Environment Variable
C.3 Message Severity
C.4 Common System Messages

Appendix D Using Intrinsic Functions
D.1 Bit Operations
D.2 Mask Operations

D.3 Miscellaneous Operations
Glossary

Tables

Tablel. GCC C Language Extensions
Table2. GCC C++ Language Extensions
Table3. - h Option Descriptions

Table4. CachelLevels

Table5. Automatic Inlining Specifications
Table6. File Types

Table7. Floating-point Optimization Levels
Table8. - Glevel Definitions

Table9. - Wphase Definitions

Table10. - Y phase Definitions

Table11l. - h pragma Directive Processing
Table12. DataType Mapping

14

Page

149

151
151
151
151
155
156
157
159

165
165
165
166
166
167
167
169

171
172
172
173

175

25
27
38
39
41
43
46
47
52
52
53
142

S-2179-71

Contents

Page
Table 13. Packed Characters C e e 143
Table14. Unrecognizable EscapeSequences 143

S-2179-71 15

Introduction [1]

The Cray Compiling Environment (CCE) contains both the Cray C and C++
compilers. The Cray C compiler conforms to the International Organization of
Standards (1SO) standard 1SO/IEC 9899:1999 (C99). The Cray C++ compiler
conforms to the ISO/IEC 14882:1998 standard, with some exceptions. The
exceptions are noted in Appendix B, Using Cray C and C++ Dialects on page 151.

You log in either to aCray XT login node or a standal one application devel opment
system and use the Cray XT Environment and related products to create your
executables. You run your executables on Cray XT compute nodes. For further
information about Cray XT login nodes and user environment, see the Cray XT
Programming Environment User's Guide. For further information about the
standal one application development platform, see the Cray Application Developer's
Environment Installation Guide.

Throughout this manual, the differences between the Cray C and C++ compilers are
noted when appropriate. When there is no difference, the phrase the compiler refers
to both compilers. All compiler command options apply to Cray C and C++ unless
SO noted.

1.1 General Compiler Description

Both the Cray C and C++ compilers are contained within the Cray Compiling
Environment (CCE). If you are compiling code written in C, use the cc command to
compile source files. If you are compiling code written in C++, use the CC command.

1.1.1 Cray C Compiler

The Cray C compiler consists of a preprocessor, a language parser, an optimizer,
and a code generator. You invoke the Cray C compiler with the cc compiler driver
command. The cc command is described in cc Command on page 20. This
command and its options are also described in the cr aycc (1) man page. See
Command Line Examples on page 60.

S-2179-71 17

Cray C and C++ Reference Manual

1.1.2 Cray C++ Compiler

The Cray C++ compiler consists of a preprocessor, alanguage parser, a prelinker,
an optimizer, and a code generator. You invoke the Cray C++ compiler with the

CC compiler driver command. The CC command is described in CC Command on
page 20 and the cr ay CC(1) man page. See Command Line Examples on page 60.

1.2 Related Publications

18

The following documents contain additional information that may be helpful:
e cc(1) compiler driver man page for all Cray XT C compilers

e craycc(l) man page for the Cray C compiler

e CC(1) compiler driver man page for all Cray XT C++ compilers

e crayCC(1) man page for the Cray C++ compiler

e intro_pragnas(l) man page

e Cray Fortran Reference Manual

e ftn(1) compiler driver man page for all Cray XT Fortran compilers
e crayftn(1l) man page for the Cray Fortran compiler

e Cray XT Programming Environment User's Guide

e aprun(l) man page

e Using Cray Performance Analysis Tools

e Cray Application Developer's Environment I nstallation Guide

S-2179-71

Invoking the C and C++ Compilers [2]

S-2179-71

This chapter describes the compiler driver commands that you use to launch the Cray
C and C++ compilers. The following commands invoke the compilers:

¢ CC, which invokes the Cray C++ compiler.
e cc, which invokes the Cray C compiler.

e cpp, the C language preprocessor, is not part of the Cray Compilation
Environment (CCE). The cpp command resolves to the GNU cpp command
and does not predefine any Cray compiler-specific macros (Chapter 9,

Using Predefined Macros on page 119). If the predefinition of the Cray
compiler-specific macros is required, then use the cc or CC command to do the
source preprocessing using the - E or - P option.

A successful compilation creates an executable, named a. out by default, that
reflects the contents of the source code and any referenced library functions. You use
the apr un command to run the executable on the Cray XT compute nodes.

For example, the following command sequence compilesfile nysour ce. ¢ and
launches the resulting executable program on 64 compute nodes:

% cc mysource.c
% aprun -n 64 ./a.out

With the use of appropriate options, you can direct the compiler to generate
intermediate tranglations, including rel ocatable object files (- ¢ option), assembly
source expansions (- S option), or the output of the preprocessor phase of the
compiler (- P or - E option). In general, you can save the intermediate files and
reference them later on a CC or cc command, with other files or libraries included
as necessary.

By default, the CC and cc commands automatically call the loader, which creates an
executablefile. If only one sourcefile is specified, the object file (*. 0) isdeleted. If
more than one source file is specified, the object files are retained.

For example, the following command creates and retains object filesfi | el. o,
file2.0,andfil e3. 0, and creates the executablefilea. out :

%cc filel.c file2.c file3.c

The following command createsfi | e. o anda. out ;fi |l e. o isnot retained.

%cc file.c

19

Cray C and C++ Reference Manual

2.1 CCCommand

The CC command invokes the Cray C++ compiler. The CC command accepts C++
source files with the following suffixes:

.C
.C
i

. C++
. C++
. cC
. CXX
. Cxx
. XX
. CC

The. i filesare created when the preprocessing compiler command option (- P) is
used. The CC command also accepts object fileswith the . o suffix, library files with
the . a suffix, and assembler source fileswith the . s suffix.

The CC command format is as follows:

CC [-c] [-C [-D macro[=def]] [-E] [-g] [-G level]

[-h arg] [-] incldir] [-1 libfile] [-L Idir] [-M [-nostdinc]
[-o outfile] [-Oleve] [-P] [-S] [-U macro] [-V]

[- Wohase, "opt..."] [-Xnpes] [-Yphase dirname] [-#] [-##] [-###]
files ...

For an explanation of the command line options, see Command Line Options on
page 21.

2.2 cc Command

20

The cc command invokes the Cray C compiler. The cc command accepts C source
filesthat havethe. c and . i suffixes; object fileswith the . o suffix; library files
with the . a suffix; and assembler source files with the. s suffix.

The cc command format is as follows:

cc [-c] [-C [-D macro[=def]] [-E] [-g] [-G level]

[-h arg] [-] incldir] [-1 libfile] [-L Idir] [-M [-nostdinc]

[-o outfile] [-Oleve] [-P] [-S] [-U macro] [-V]

[-Wphase, "opt. .. "] [-Xnpes|] [-Yphase dirname] [-#] [-##] [-###]
files . ..

For an explanation of the command line options, see Command Line Options on
page 21.

S-2179-71

Invoking the C and C++ Compilers [2]

2.3 Command Line Options

S-2179-71

The following subsections describe options for the CC and cc commands. These
options are grouped according to the following functions:

Standard conformance options (Standard Language Conformance Options on
page 22)

Template language options (Template Language Options on page 27)
Virtual function options (Virtual Function Options on page 29)
General language options (General Language Options on page 30)
General optimization options (General Optimization Options on page 32)
Automatic cache management options (- h cachen on page 38)
Vector optimization options (Vector Optimization Options on page 39)
Inlining options (Inlining Optimization Options on page 40)

Scalar optimization options (Scalar Optimization Options on page 43)
Math options (Math Options on page 44)

Debugging options (Debugging Options on page 47)

Compiler message options (Compiler Message Options on page 48)
Compilation phase options (Compilation Phase Options on page 50)
Preprocessing options (Preprocessing Options on page 52)

L oader options (Loader Options on page 55)

Miscellaneous options (Miscellaneous Options on page 57)

Command line examples (Command Line Examples on page 60)

Options other than those described in this manual are passed to the loader.

There are many options that start with - h. You can specify multiple - h options using
commas to separate the arguments. For example, the- h par se_t enpl at es and
- h f p0O command line options can be specified as- h par se_t enpl at es, f pO0.

If you specify conflicting options, the option specified last on the command line
overrides the previously specified option. Exceptionsto this rule are noted in the
individual descriptions of the options.

21

Cray C and C++ Reference Manual

The following examplesillustrate the use of conflicting options:
e Inthisexample, - h f pO overrides-h fpl:
%cc -h fpl, fp0 nyfile.c

e Inthisexample, - h vect or 2 overrides the earlier vector optimization level
3 implied by the - O3 option:

% CC - -h vector2 nyfile.C

Most #pr agna directives override corresponding command line options. Exceptions
to thisrule are noted in descriptions of options or #pr agna directives.

2.4 Standard Language Conformance Options

This section describes standard conformance language options. Each subsection
heading shows in parentheses the compiler with which the option can be used.

2.4.1 -h[no]c99 (cc)
Default: -h c99

This option enables or disables language features new to the C99 standard and Cray
C compiler, while providing support for features that were previously defined as
Cray extensions. If the previous implementation of the Cray extension differed from
the C99 standard, both implementations will be available when the- h ¢99 option
isenabled. The-h ¢99 option is also required for C99 features not previously
supported as extensions.

When - h noc99 isused, C99 language features such as variable-length arrays
(VLAS) and restricted pointers that were available as extensions previously to
adoption of the C99 standard remain available to you.

2.4.2 -h[no] conform(CC, cc),-h[no]stdc (cc)
Default: -h noconform-h nostdc

The-h conformand-h stdc options specify strict conformance to the 1SO
C standard or the ISO C++ standard. The- h noconf or mand - h nost dc
options specify partial conformance to the standard. The- h excepti ons, -h
dep_nane,-h parse_tenplates,and-h const_string literals
options are enabled by the - h conf or moption in Cray C++.

22 S-2179-71

Invoking the C and C++ Compilers [2]

2.4.3 -h cfront (CO

The-h cf ront option causesthe Cray C++ compiler to accept or reject constructs
that were accepted by previous cf r ont -based compilers (such as Cray C++ 1.0) but
which are not accepted in the C++ standard. The- h anachr oni sns optionis
implied when - h cfront is specified.

2.4.4 -h[no] parse_tenpl at es (CC)
Default: -h noparse_tenpl at es

This option allows existing code that defines templates using previous versions of the
Cray Standard Template Library (STL) (before Programming Environment 3.6) to
compile successfully with the - h conf or moption. Consequently, this allows you
to compile existing code without having to use the Cray C++ STL. To do this, use the
nopar se_t enpl at es option. Also, the compiler defaults to this mode when the
-h dep_name option isused. To have the compiler verify that your code uses the
Cray C++ STL properly, usethe par se_t enpl at es option.

2.4.5 -h[no] dep_nane (CC
Default: -h nodep_nane

This option enables or disables dependent name processing (that is, the separate
lookup of names in templates when the template is parsed and when it isinstantiated).
The-h dep_name option cannot be used with the- h nopar se_t enpl at es
option.

2.4.6 -h[no] exceptions (CC

Default: The default is - h excepti ons; however, if the
CRAYOLDCPPLI B environment variable is set to a nonzero
value, the default is- h noexcepti ons.

The-h excepti ons option enables support for exception handling. The

-h noexcepti ons option issues an error whenever an exception construct, at ry
block, at hr owexpression, or at hr ow specification on afunction declaration is
encountered. The- h excepti ons optionisenabled by - h conf orm

2.4.7 - h [no] anachr oni sns (CC)
Default: -h noanachroni sis

The- h [no] anachr oni sns option disables or enables anachronismsin Cray
C++. Thisoptionisoverridden by - h conf orm

S-2179-71 23

Cray C and C++ Reference Manual

24.8 -h new for_init (CO

The-h new_for_i nit option enablesthe new scoping rules for a declaration

in a for-init-statement. This means that the new standard-conforming rules are in
effect; theentire f or statement iswrapped in its own implicitly generated scope. The
-h new for_init optionisimplied by the- h conf or moption.

Thisisthe result of the scoping rule:
{
1;or (int i =0; i <n; i++) {

} /1 scope of i ends here for -h new for_init

} I/ scope of i ends here by default

249 -h[no]tol erant (cc)

Default: -h not ol er ant

The-h tol erant option alows older, less standard C constructs, thereby making
it easier to port code written for previous C compilers. Errors involving comparisons
or assignments of pointers and integers become warnings. The compiler generates
casts so that the types agree. With - h not ol er ant , the compiler is intolerant

of the older constructs.

The-h tol erant option causesthe compiler to tolerate accessing an object with
one type through a pointer to an entirely different type. For example, a pointer to a

| ong might be used to access an object declared with type doubl e. Such references
violate the C standard and should be eliminated if possible. They can reduce the
effectiveness of dias analysis and inhibit optimization.

2.4.10 -h[no]const _string literals (CC

24

Defaullt: -h noconst_string_literals

The-h[no] const _string_literal s optioncontrols whether string literals
are const (asrequired by the standard) or non-const (aswastruein earlier
versions of the C++ language).

S-2179-71

Invoking the C and C++ Compilers [2]

2.4.11 -h [no] gnu

Default: -h nognu

The-h gnu option enables the compiler to recognize the subset of the GCC version
3.3.2 extensionsto C listed in Table 1. Table 2 lists the extensions that apply only to
C++.

For detailed descriptions of the GCC C and C++ language extensions, see
http://gcc.gnu.org/onlinedocy.

Table 1. GCC C Language Extensions

GCC C Language Extension Description

Typeof t ypeof : referring to the type of an expression
Lvalues Using ?:, and castsin Ivalues

Conditionals Omitting the middle operand of a?: expression

Long Long Double-word integers-- | ong | ong i nt

Complex Data types for complex numbers

Statement Exprs Putting statements and declarations inside expressions
Zero Length Zero-length arrays

Variable Length Arrays whose length is computed at run time

Empty Structures
Variadic Macros
Escaped Newlines
Multiline strings
Initializers
Compound Literals
Designated Inits
Cast to Union

Case Ranges
Mixed Declarations
Attribute Syntax
Function Prototypes

C++ Comments
Dollar Signs
Character Escapes

Alignment

S-2179-71

Structures with no members; appliesto C but not C++
Macros with a variable number of arguments

Slightly looser rules for escaped newlines

String literals with embedded newlines

Non-constant initializers

Compound literals give structures, unions or arrays as values
Labeling elements of initializers

Casting to union type from any member of the union
‘case 1 ... 9" andsuch

Mixing declarations and code

Formal syntax for attributes

Prototype declarations and old-style definitions; appliesto C
but not C++

C++ comments are recognized
Dollar signis allowed in identifiers
\ e stands for the character <ESC>

Inquiring about the alignment of atype or variable

25

http://gcc.gnu.org/onlinedocs/

Cray C and C++ Reference Manual

GCC C Language Extension

Description

Inline

Alternate Keywords
Incomplete Enums
Function Names
Return Address
Unnamed Fields

Function Attributes: nothrow; format,

format_arg; deprecated; used; unused;

dias; weak

Variable Attributes: alias; deprecated;

unused; used; transparent_union; weak;

Type Attributes: deprecated; unused;
used; transparent_union

Asm Labels

Other Builtins:
__builtin_types_conpati bl e_p,
__builtin_choose_expr,
__builtin_constant _p,
__builtin_huge_val,
__builtin_huge_valf,
__builtin_huge_vall,
__builtin_inf, builtin_inff,
__builtin_infl,
__builtin_nan, builtin_nanf,
__builtin_nanl,
__builtin_nans,
__builtin_nansf,
__builtin_nansl

__const__,

Defining inline functions (as fast as macras)

asm__, and so on, for header files
enum f 0o; , with details to follow

Printable strings which are the name of the current function
Getting the return or frame address of afunction

Unnamed struct/union fields within structs/unions

Declaring that functions have no side effects, or that they can
never return
Specifying attributes of variables

Specifying attributes of types

Specifying the assembler name to use for a C symbol

Other built-in functions

Specid filessuch as/ dev/ nul | may be used as source files.

The supported subset of the GCC version 3.3.2 extensions to C++ arelisted in Table

2.

26

S-2179-71

Invoking the C and C++ Compilers [2]

Table 2. GCC C++ Language Extensions

GCC C++ Extensions Description

Min and Max C++ minimum and maximum operators

Restricted Pointers C99 restricted pointers and references

Backwards Compatibility Compatibilities with earlier definitions of C++

Strong Using A usi ng directivewith __attri bute ((strong))
Explicit template specializations Attributes may be used on explicit template specializations

2.5 Template Language Options

This section describes template language options. For more information about
template instantiation, see Chapter 7, Using Cray C++ Template Instantiation on
page 105. Each subsection heading shows in parentheses the compiler with which
the option can be used.

25.1 -h sinple_tenpl ates (CC

The-h sinpl e_t enpl at es option enables simple template instantiation by the
Cray C++ compiler. For more information about template instantiation, see Chapter
7, Using Cray C++ Template Instantiation on page 105.

2.5.2 -h[no]autoi nstanti ate (CC)
Default: -h noautoinstantiate

The - h [no] autoinstantiate option enables or disables prelinker (automatic)
instantiation of templates by the Cray C++ compiler. For more information about
template instantiation, see Chapter 7, Using Cray C++ Template Instantiation on
page 105.

253 -hone_instantiati on_per_object (CO

The-h one_instantiati on_per _obj ect option puts each template
instantiation used in a compilation into a separate object file that has a

. i nt. o extension. The primary object file will contain everything else
that is not an instantiation. For the location of the object files, seethe - h

i nstanti ati on_dir option.

S-2179-71 27

Cray C and C++ Reference Manual

254 -h instantiation_dir=dirname (CC

The-h instantiation_dir =dirname option specifies the instantiation
directory that the- h one_i nstanti ati on_per _obj ect option should
use. If directory dirname does not exigt, it will be created. The default directory
is./ Tenpl ate. dir.

2.5.5 -h instanti at e=mode (CC)
Default: -h instanti at e=none

Usually, during compilation of a source file, no template entities are instantiated
(except those assigned to the file by automatic instantiation). However, you can
change the overall instantiation mode by using the - h i nst ant i at e=mode
option, where mode is specified asnone, used, al | , or| ocal . Thedefaultis- h
i nstanti at e=none. To change the overall instantiation mode, specify one of
the following for mode:

none Default. Does not automatically create instantiations of any
template entities. Thisis the most appropriate mode when prelinker
(automatic) instantiation is enabled.

used Instantiates only those template entities that were used in the
compilation. Thisincludes al static data members that have template
definitions.

al | Instantiates all template functions declared or referenced in the

compilation unit. For each fully instantiated template class, al

of its member functions and static data members are instantiated,
regardless of whether they were used. Nonmember template
functions are instantiated even if the only reference was a declaration.

| ocal Similar toi nst ant i at e=used, except that the functions are
given internal linkage. This mode provides a simple mechanism for
those who are not familiar with templates. The compiler instantiates
the functions used in each compilation unit as local functions, and the
program links and runs correctly (barring problems due to multiple
copies of local static variables). This mode may generate multiple
copies of the instantiated functions and is not suitable for production
use. This mode cannot be used in conjunction with prelinker
(automatic) template instantiation. Automatic template instantiation
is disabled by this mode.

If CCisgiven asingle source file to compile and link, all instantiations are done in
the single source file and, by default, thei nst ant i at e=used mode is used to
suppress prelinker instantiation.

28 S-2179-71

Invoking the C and C++ Compilers [2]

25.6 -h[no]inplicitinclude (CC
Default: -h noi nplicitinclude

The-h[no]inplicitinclude option enablesor disablesimplicit inclusion of
source files as a method of finding definitions of template entities to be instantiated.

25.7 -hrenove_instantiati on_fl ags (CC)

The-h renmove_instanti ati on_fl ags option causes the prelinker to
recompile all the source files to remove all instantiation flags.

25.8 -hprelink_| ocal copy (CO

The-h prelink_|I ocal copy indicatesthat only local files (for example, files
in the current directory) are candidates for assignment of instantiations.

259 -hprelink_copy_if_nonl ocal (CC)

The-h prelink_copy_if_nonl ocal option specifiesthat assignment of an
instantiation to a nonlocal object file will result in the object file being recompiled
in the current directory.

2.6 Virtual Function Options

This section describes general language options.

2.6.1 -h forcevtbl (CC)

The-h forcevtbl option forcesthe definition of virtual function tablesin cases
where the heuristic methods used by the compiler to decide on definition of virtual
function tables provide no guidance. The virtual function table for aclassis defined
in a compilation if the compilation contains a definition of the first non-inline,
non-pure virtual function of the class. For classes that contain no such function, the
default behavior isto define the virtual function table (but to define it asalocal static
entity). The- h forcevt bl option differs from the default behavior in that it does
not force the definition to be local.

2.6.2 -h suppressvt bl (CC)

The-h suppressvt bl option suppresses the definition of virtual function tables
in cases where the heuristic methods used by the compiler to decide on definition of
virtual function tables provide no guidance.

S-2179-71 29

Cray C and C++ Reference Manual

2.7 General Language Options

This section describes general language options. Each subsection heading showsin
parentheses the compiler with which the option can be used.

2.7.1 - h keep=file (CO)

272 -hrestri

30

When the - h keep=file option is specified, the static constructor/destructor object

(. o) fileisretained asfile. This option is useful when linking . o files on a system
that does not have a C++ compiler. The use of this option requires that the mai n
function must be compiled by C++ and the static constructor/destructor function must
be included in the link. With these precautions, mixed object files (fileswith . o
suffixes) from C and C++ compilations can be linked into executables by using the
loader command instead of the CC command.

ct =args

The-hrestrict=argsoption globally tells the compiler to treat certain classes of
pointers as restricted pointers. You can use this option to enhance optimizations (this
includes vectorization).

Classes of affected pointers are determined by the value contained in args, as follows:

args Description

a All pointers to object and incomplete types
are considered restricted pointers, regardless
of where they appear in the source code.
Thisincludes pointersin cl ass, st ruct,
and uni on declarations, type casts,
function prototypes, and so on.

Caution: Do not specifyrestri ct=a
A if, during execution of any function,

an object is modified and that object is

referenced through either two different

pointers or through the declared name

of the object and a pointer. Undefined

behavior may result.

S-2179-71

Invoking the C and C++ Compilers [2]

S-2179-71

args

Description

AN

All function parameters that are pointers to
objects or incomplete types can be treated
as restricted pointers.

Caution: Do not specify restri ct =f
if, during execution of any function,

an object is modified and that object is
referenced through either two different
pointer function parameters or through the
declared name of the object and a pointer
function parameter. Undefined behavior
may result.

All parametersthat aret hi s pointers can
be treated as restricted pointers (Cray C++

only).

Caution: Do not specify restri ct =t
if, during execution of any function,

an object is modified and that object is
referenced through the declared name of
the object and at hi s pointer. Undefined
behavior may result.

The args arguments tell the compiler to assume that, in the current compilation unit,
each pointer (=a), each pointer that is a function parameter (=f), or eacht hi s
pointer (=t) points to a unique object. This assumption eliminates those pointers
as sources of potential aliasing, and may allow additional vectorization or other
optimizations. These options cause only data dependencies from pointer aliasing to
be ignored, rather than all data dependencies.

Caution: The arguments make assertions about your program that, if incorrect, can
introduce undefined behavior. You should not use- h restri ct =a if, during
the execution of any function, an object is modified and that object is referenced
through either of the following:

Two different pointers

The declared name of the object and a pointer

The-h restrict=f and-h restrict=t options are subject to the
analogous restriction, with "function parameter pointer” replacing "pointer."

31

Cray C and C++ Reference Manual

2.7.3 -h[no]cal chars

AN

2.7.4 -h[no]si

Default: -h nocal chars

The- h cal char s option alows the use of the $ character in identifier names.
Thisoption is useful for porting code in which identifiersinclude this character. With
-h nocal char s, this character is not allowed in identifier names.

Caution: Use this option with extreme care, because identifiers with this character
are within CNL name space and are included in many library identifiers, internal
compiler labels, objects, and functions. You must prevent conflicts between any of
these uses, current or future, and identifier declarations or referencesin your code;
any such conflict is an error.

gnedshifts
Default: -h nosi gnedshifts

The - h [no] si gnedshi ft s option affects the result of the right shift
operator. For the expression €1 >> e2, where el has a signed type, when

-h si gnedshi ft s isin effect, the vacated bits are filled with the sign bit of el.
When - h nosi ghedshi f t s isin effect, the vacated bits are filled with zeros,
identical to the behavior when el has an unsigned type.

Also, see Integers on page 144 about the effects of this option when shifting integers.

2.8 General Optimization Options

This section describes general optimization options. Each subsection heading shows
in parentheses the compiler with which the option can be used.

2.8.1 -h[no] aggress

Default: -h noaggress

The-h aggr ess option provides greater opportunity to optimize loops that would
otherwise by inhibited from optimization due to an internal compiler size limitation.
-h noaggr ess leavesthis size limitation in effect.

With - h aggr ess, internal compiler tables are expanded to accommodate larger
loop bodies. This option can increase the compilation's time and memory size.

2.8.2 - h [no] aut ot hr ead

32

Default: -h noaut ot hr ead

The-h [no] aut ot hr ead option enables or disables automatic threading.

S-2179-71

Invoking the C and C++ Compilers [2]

2.8.3 -h display_opt

The-h di spl ay_opt option displays the current optimization settings for this
compilation.

2.8.4 -h [no] dwar f

The-h [no] dwar f option controls whether DWARF debugging information is
generated during compilation.

Default: - h dwar f

2.8.5 -h fusionn
Default; -h fusion2

The—h f usi onn option controls loop fusion and changes the assertiveness of the
f usi on pragma. Loop fusion can improve the performance of loops, although in
rare cases it may degrade performance. The n argument allows you to turn loop
fusion on or off and determine where fusion should occur.

Note: Loop fusion is disabled when the scalar level is set to O.
Default: -h fusion2

The values for n are:

0 No fusion (ignore al f usi on pragmas and do not attempt to fuse
other loops)

1 Attempt to fuse loops that are marked by the f usi on pragma.

2 Attempt to fuse all loops (includes array syntax implied loops),

except those marked with the nof usi on pragma.

2.8.6 -h [no]intrinsics
Default: -h intrinsics

The-h intrinsics option alowsthe use of intrinsic hardware functions, which
alow direct access to some hardware instructions or generate inline code for some
functions. This option has no effect on specially handled library functions.

Intrinsic functions are described in Appendix D, Using Intrinsic Functions on
page 171.

28.7 -hlist

The-h 1i st =opt option allows you to create listings and control their formats. The
listings are written to source file_name without_suffix. | st .

S-2179-71 33

Cray C and C++ Reference Manual

The values for opt are:

a

S

Use dll list options; source_file_name_without_suffix. | st includesa
summary report, an options report, and the source listing.

Decompiles (trandates) the intermediate representation of the
compiler into listings that resemble the format of the source code.
Thisis performed twice, resulting in two output files, at different
points during the optimization process. You can use these filesto
examine the restructuring and optimization changes made by the
compiler, which can lead to insights about changes you can make to
your source code to improve its performance.

The compiler produces two decompilation listing files with these
extensions per specified sourcefile: . opt and . cg. The compiler
generates the . opt file after applying most high-level loop nest
transformations to the code. The code structure of this listing most
resembles your source code and is readable by most users. In some
cases, because of optimizations, the structure of the loops and
conditionals will be significantly different than the structure in your
source file.

The. cg file contains a much lower level of decompilation. Itis
quite close to what will be produced as assembly output. This version
displays the intermediate text after all vector trandlation and other
optimizations have been performed. An intimate knowledge of the
hardware architecture of the system is helpful to understanding this
listing.

The. opt and. cqg files are intended as a tool for performance
analysis and are not valid source code. The format and contents of
the files can be expected to change from release to release.

Expand include files.

Note: Using this option may result in avery large listing file. All
system include files are also expanded.

I ntersperse optimization messages within the source listing rather
than at the end.

Create loopmark listing; source_file_name_without_suffix. | st
includes summary report and source listing.

Create a complete source listing (include files not expanded).

Using- h | i st =mcreatesaloopmark listing. Thee, i , s, and w options provide
additional listing features. Using- h 1 i st =a combines all options.

34

S-2179-71

Invoking the C and C++ Compilers [2]

2.8.8 -h[no] nsgs

Default: -h nonsgs

The-h nsgs option causes the compiler to write optimization messages to
stderr.

Whenthe- h nsgs option isin effect, you may request that a listing be produced
So that you can see the optimization messages in the listing. For information about
obtaining listings, see- h | i st on page 33.

2.8.9 -h [no] negnsgs

Default: -h nonegnsgs

The-h negnsgs option causes the compiler to generate messagesto st der r
that indicate why optimizations such as vectorization or inlining did not occur in a
given instance.

The-h negnsgs option enablesthe- h negs option. The-h | i st =a option
enablesthe - h negnsgs option.

2.8.10 -h[no]Jonp_trace

Default: -h noonp_trace (tracing is off)

The-h [no] onp_trace option turnsthe insertion of the CrayPat OpenMP tracing
cals on or off.

2.8.11 -h[no]func_trace

S-2179-71

The-h func_trace option isfor use only with CrayPat. If this option is
specified, the compiler inserts CrayPat trace entry points into each function in the
compiled source file. The names of the trace entry points are:

e _ pat_tp_func_entry
e _ pat_tp_func_return

These are resolved by CrayPat when the program is instrumented using the

pat _bui | d command. When the instrumented program is executed and it
encounters either of these trace entry points, CrayPat captures the address of the
current function and its return address.

35

Cray C and C++ Reference Manual

2.8.12 -h [no] overi ndex
Default: -h nooveri ndex

The-h overi ndex option declares that there are array subscripts that index
adimension of an array that is outside the declared bounds of that array. The

-h nooveri ndex option declares that there are no array subscripts that index a
dimension of an array that is outside the declared bounds of that array.

2.8.13 -h[no]pattern
Default: -h pattern
The- h [no] patt er n option globally enables or disables pattern matching.

When the compiler recognizes certain patterns in the source code, it replaces the
construct with a call to an optimized library routine. A loop or statement that has
been pattern matched and replaced with a call to alibrary routine is indicated with an
Ain the loopmark listing.

Note: Pattern matching is not always worthwhile. If there is a small amount of
work in the pattern-matched construct, the call overhead may outweigh the time
saved by using the optimized library routine. When compiling using the default
optimization settings, the compiler attempts to determine whether each given
candidate for pattern matching will in fact yield improved performance.

2.8.14 -h profile_generate

The-h profil e_gener at e option directs that the source code be instrumented
for gathering profile information. The compiler inserts calls and data-gathering
instructions to allow CrayPat to gather information about the loopsin a compilation
unit. If you use this option, you must run CrayPat on the resulting executable so the
CrayPat data-gathering routines are linked in. For information about CrayPat and
profile information, see the Using Cray Performance Analysis Tools guide.

2.8.15 -h t hreadn
Default: —h thread2

The-h t hr eadn options control the optimization of both OpenMP and automatic
threading.

The values of n are:
0 No autothreading or OMP (OpenMP) threading.

1 No parallél region expansion, no loop restructuring for OMP loops,
no optimization across OMP constructs.

36 S-2179-71

Invoking the C and C++ Compilers [2]

2 Parallel region expansion, limited loop restructuring, optimization
across OMP constructs.
3 Reduction results may not be repeatable. Loop restructuring,

including modifying iteration space for static schedules (breaking
standard compliance).

2.8.16 -hunrolln

2.8.17 -Oleve

S-2179-71

Default; —h unroll 2

The - h unrol I noption globally controls loop unrolling and changes the
assertiveness of theunr ol | pragma. By default, the compiler attempts to unroll al
loops, unless the nounr ol | pragmais specified for aloop. Generaly, unrolling
loops increases single processor performance at the cost of increased compile time
and code size.

The n argument allows you to turn loop unrolling on or off and specify where
unrolling should occur. It also affects the assertiveness of theunr ol | pragma.

The values for n are;

0 No unralling (ignore al unr ol | pragmas and do not attempt to
unroll other loops).

1 Attempt to unroll loops that are marked by theunr ol | pragma.

2 Unroll loops when performance is expected to improve. Loops
marked with theunr ol | or nounr ol | pragma override automatic
unrolling.

Note: Loop unrolling is disabled when the scalar level is set to 0.

Default: Equivalent to the appropriate - h option except that - O3 is equivalent
to-h cache2

The - Olevel option specifies the optimization level for agroup of compiler features.
Specifying - Owith no argument is the same as not specifying the - O option; this
syntax is supported for compatibility with other vendors.

A vaueof 0, 1, 2, or 3 setsthat level of optimization for each of the- h scal arn
and - h vect or noptions.

The- Ovauesof 0, 1, 2, or 3 set that level of optimization for - h cachen options,
except that - O3 isequivalentto- h cache2.

The - Q2 option isequivaent toi pa2, scal ar 2, vect or 2, cache2, and
t hread2.

37

Cray C and C++ Reference Manual

Optimization features specified by - Oare equivaent to the - h options listed in
Table 3.

Table 3. - h Option Descriptions

- h option Description location

-h cachen -h cachen on page 38
-h vectorn -h vect or non page 39
-h scalarn -h scal ar n on page 44

Table 4 shows the equivalent level of automatic cache optimization for the - h option.

2.9 Automatic Cache Management Options

This section describes the automatic cache management options. Automatic
cache management can be overridden by the use of the cache directives (cache,
cache_nt,and| oop_i nf 0).

2.9.1 -h cachen
Default: -h cache2

The-h cachen option specifies the levels of automatic cache management to
perform. Thedefaultis- h cache2.

The values for n are:

0 Cache blocking (including directive-based blocking) is turned off.
This level is compatible with all scalar and vector optimization
levels.

1 Conservative automatic cache management. Characteristics include

moderate compile time. Symbols are placed in the cache when the
possibility of cache reuse exists and the predicted cache footprint of
the symbol inisolation is small enough to experience the reuse.

2 Moderately aggressive automatic cache management. Characteristics
include moderate compile time. Symbols are placed in the cache
when the possibility of cache reuse exists and the predicted state of
the cache model is such that the symbol will experience the reuse.

3 Aggressive automatic cache management. Characteristicsinclude
potentially high compile time. Symbols are placed in the cache when
the possibility of cache reuse exists and the allocation of the symbol
to the cacheis predicted to increase the number of cache hits.

38 S-2179-71

Invoking the C and C++ Compilers [2]

Table 4. Cache Levels

- OOption Cache Leve
-0 -h cacheO
-0 -h cachel
-2 -h cache2
-8B -h cache2

2.10 Vector Optimization Options

This section describes vector optimization options. Each subsection heading showsin
parentheses the compiler command with which the option can be used.

2.10.1 -h vectorn

S-2179-71

Default: -h vector?2

The - h vect or n option specifies the level of automatic vectorizing to be
performed. Vectorization results in significant performance improvements with a
small increase in object code size. Vectorization directives are unaffected by this
option.

39

Cray C and C++ Reference Manual

The values of n are:

Description

0 No automatic vectorization. Characteristics include low compile time
and small compile size. This option is compatible with all scalar
optimization levels.

(=]

1 Specifies conservative vectorization. Characteristics include
moderate compile time and size. No loop nests are restructured;
only inner loops are vectorized. No vectorizations that might create
false exceptions are performed. Results may differ slightly from
results obtained when - h vect or O is specified because of vector
reductions.

The-h vect or 1 option is compatible with- h scal ar 1,
-h scalar2,and-h scal ar 3.

2 Specifies moderate vectorization. Characteristics include moderate
compiletime and size. Loop nests are restructured.

The-h vect or 2 option is compatible with- h scal ar 2 and
-h scal ar 3.

3 Specifies aggressive vectorization. Characteristics include
potentially high compile time and size. Loop nests are restructured.
Vectorizations that might create false exceptions in rare cases may
be performed.

For further information, see Vectorization Directives on page 76.

2.11 Inlining Optimization Options

40

Inlining is the process of replacing a user procedure call with the procedure definition
itself. This saves subprogram call overhead and may allow better optimization of
theinlined code. If all callswithin aloop are inlined, the loop becomes a candidate
for paralelization.

The- h i pan option specifies automatic inlining. Automatic inlining allows the
compiler to automatically select which functions to inline, depending on the inlining
level n. Each n specifies adifferent set of heuristics. When - h i panisused aone,
the candidates for expansion are all those functions that are present in the input file to
the compile step. If - h i panisused in conjunction with - h i paf r omesource, the
candidates for expansion are those functions present in source. For an explanation of
each lining level, see Table 5.

S-2179-71

Invoking the C and C++ Compilers [2]

2.11.1 -h ipan

S-2179-71

The compiler supports the following inlining modes through the indicated options:

e Automatic inlining allows the compiler to automatically select which procedures
to inline, depending on the selected inlining level.

» Explicit inlining allows you to explicitly indicate which procedures the compiler
should attempt to inline.

e Combined inlining allows you to specify potential targets for inline expansion,
while applying the selected level of inlining heuristics.

Cloning is the duplication of a procedure with modifications to the procedure such
that it will run more efficiently. The original call site to that procedure is replaced
with a call to the duplicate copy.

For example, the compiler will clone a procedure when there are constants in the call
site to that procedure. The new clone will replace the associated formal parameter
with its constant actual argument.

Automatic cloning isenabled at - h i pa4 and higher.

The compiler first attempts to inline a call site. If inlining the call site fails, the
compiler attempts to clone the procedure for the specific cal site.

Default: -h ipa3

The-h i pan option allows the compiler to automatically decide which procedures
to consider for inlining. Procedures that are potential targets for inline expansion
include all the procedures within the input file to the compilation. Table 5 explains
what isinlined at each level.

Table 5. Automatic Inlining Specifications

Inlininglevel Description

0 All inlining is disabled. All inlining compiler directives are
ignored.
1 Directiveinlining. Inlining is attempted for call sites and routines

that are under the control of an inlining pragma directive. See
Inlining Directives on page 89 for more information about
inlining directives.

2 Call nest inlining. Inline acall nest to an arbitrary depth aslong
as the nest does not exceed some compiler-determined threshold.
A call nest can be aleaf routine. The expansion of the call nest
must yield straight-line code (code containing no external calls)
for any expansion to occur.

41

Cray C and C++ Reference Manual

Inlining level

Description

3

Constant actual argument inlining. Thisincludeslevels1 and 2,
plus any call site that contains a constant actual argument. Thisis
the default inlining level.

Tiny routine inlining plus cloning. Thisincludeslevels1, 2, and
3, plusthe inlining of very small routines, regardless of where
those routines fall in the call graph. The lower limit threshold
isan internal compiler parameter. Also, routine cloning is
attempted if inlining fails at a given call site.

Aggressive interprocedural analysis (IPA). Includes levels 1,
2,3, and 4. Additionally, Globa Constant Propagation is
performed. Thisisthe replacement of variables that are statically
initialized and never modified anywhere in the user program. The
variable is replace with the constant valuein itsinitializer. This
applies only to scalar variables.

2.11.2 -h i paf rom=source [source]

42

The-h i paf romesource[: source] option alows you to explicitly indicate the
procedures to consider for inline expansion. The source arguments identify each
file or directory that contains the routines to consider for inlining. Whenever a call
is encountered in the input program that matches a routine in source, inlining is
attempted for that call site.

Note: Spaces are not allowed on either side of the equal sign.

All inlining directives are recognized with explicit inlining. For information about
inlining directives, see Inlining Directives on page 89.

Note: The routinesin source are not actually loaded with the final program. They
are simply templates for the inliner. To have a routine contained in source loaded
with the program, you must include it in an input file to the compilation.

S-2179-71

Invoking the C and C++ Compilers [2]

Use one or more of the following objects in the source argument.

Table 6. File Types

C or C++ sourcefiles The routines in C or C++ source files are
candidates for inline expansion and must contain
error-free code.

Source files that are acceptable for inlining are
files that have one of the following extensions: . C,
. C++,. C++, . cc,. cxX, . C&xx,. CXX, or . CC.

dir A directory that contains any of the file types
described in this table.

2.11.3 Combined Inlining

Combined inlining is invoked by specifyingthe-h i panand-h i pafronm=
options on the command line. This inlining mode will look only in source for
potential targets for expansion, while applying the selected level of inlining heuristics
specified by the- h i pan option.

2.12 Scalar Optimization Options

2.12.1 -h[no]i

S-2179-71

This section describes scalar optimization options. Each subsection heading showsin
parentheses the compiler command with which the option can be used.

nt er change
Default: -h interchange

The-h interchange option allows the compiler to attempt to interchange all
loops, atechnique that is used to gain performance by having the compiler swap

an inner loop with an outer loop. The compiler attempts the interchange only if the
interchange will increase performance. Loop interchange is performed only at scalar
optimization level 2 or higher.

The-h noi nt er change option prevents the compiler from attempting to
interchange any loops. To disable interchange of loops individualy, use the
#pragma _CRlI noi nt er change directive.

43

Cray C and C++ Reference Manual

2.12.2 -h scal arn

Default: -h scal ar2

The-h scal ar n option specifies the level of automatic scalar optimization to be
performed. Scalar optimization directives are unaffected by this option (see Scalar
Directives on page 84).

The values for n are:

0 Minimal automatic scalar optimization. The
-h mat herror=errno andthe-h zeroi nc options are
impliedby - h scal ar 0.

1 Conservative automatic scalar optimization. This level implies
-h mat herror=abort and-h nozeroi nc.

2 Aggressive automatic scalar optimization. The scalar optimizations
that provide the best application performance are used, with some
limitations imposed to allow for faster compilation times.

3 Very aggressive optimization; compilation times may increase
significantly.

2.12.3 -h [no] zeroi nc

Default; -h nozeroinc

The-h nozer oi nc option improves run time performance by causing the
compiler to assume that constant increment variables (CIVs) in loops are not
incremented by expressions with a value of 0.

The-h zer oi nc option causes the compiler to assume that some constant
increment variables (CIVs) in loops might be incremented by 0 for each pass through
the loop, preventing generation of optimized code.

For example, in aloop with index i, the expression expr in the statement i +=expr
can evaluate to 0. Thisrarely happensin actual code. - h zer oi nc isthe safer
and slower option. This option is affected by the- h scal ar noption (see- h
scal ar n on page 44).

2.13 Math Options

44

This section describes compiler options pertaining to math functions. Each subsection
heading shows in parentheses the compiler command with which the option can be
used.

S-2179-71

Invoking the C and C++ Compilers [2]

2.13.1 -h fpn
Default: -h fp2

The-h f p option alows you to control the level of floating-point optimizations.
The n argument controls the level of allowable optimization; O gives the compiler
minimum freedom to optimize floating-point operations, while 3 gives it maximum
freedom. The higher the level, the lesser the floating-point operations conform to
the |EEE standard.

Thisoption is useful for code using algorithms that are unstable but optimizable.
Generadlly, thisisthe behavior and usage for each - h f p level:

« The-h fpO option causes your program's executable code to conform
more closely to the IEEE floating-point standard than the default mode (- h
f p2). When you specify this level, many identity optimizations are disabled,
vectorization of floating-point reductions are disabled, executable code is slower
than higher floating-point optimization levels, and a scaled complex divide
mechanism is enabled that increases the range of complex values that can be
handled without producing an underflow.

Note: Usethe- h f p0 option only when your code pushes the limits of IEEE
accuracy or requires strong |EEE standard conformance.

e« The-h fpl option performs various, generally safe, non-conforming |EEE
optimizations, such asfoldinga == atot rue, where a is afloating point
object. At thislevel, floating-point reassociation? is greatly limited, which may
affect the performance of your code.

You should never usethe- h f pl option except when your code pushes the
limits of IEEE accuracy or requires strong | EEE standard conformance.

e -h fp2 —includesoptimizationsof - h f pl.
e -h fp3—includesoptimizationsof - h f p2.

You should usethe- h f p3 option when performance is more critical than the
level of IEEE standard conformance provided by - h f p2.

1 For example, a+b+c isrearranged to b+a+c, wherea, b, and ¢ are floating point variables.

S-2179-71 45

Cray C and C++ Reference Manual

Table 7 compares the various optimization levels of the- h f p option (levels 2 and
3 are usually the same). The table lists some of the optimizations performed; the
compiler may perform other optimizations not listed.

Table 7. Floating-point Optimization Levels

Optimization
Type f pO fpl f p2 (default) fp3
Complex Accurate and slower Accurate and Less accurate (less Less accurate (less
divisions slower precision) and faster. precision) and faster.
Exponentiation None None Maximum Maximum
rewrite performance? performance? 3
Strength Fast Fast Aggressive Aggressive
reduction
Rewrite None None Yes Aggressive
division as
reciprocal
equivalent 4
Floating point ~ Slow Fast Fast Fast
reductions
Saf ety Maximum Moderate Moderate Low
Expression None Yes Yes Yes
factoring
Expression None No Yes Yes
tree balancing
2

4

Rewriting values raised to a constant power into an algebraically equivalent series of multiplications
and/or square roots.
Rewriting exponentiations (a®) not previously optimized into the algebraically equivalent form exp(b

* In(a)).

For example, x/ y istransformedtox * 1.0/y.

46

S-2179-71

Invoking the C and C++ Compilers [2]

2.13.2 -h nat herror

Default: -h mat herror=abort

The-h mat her r or =method option specifies the method of error processing used
if astandard math function encounters an error. The method argument can have one
of the following values:

method Description
abort If an error is detected, er r no isnot set. Instead, amessage is issued

and the program aborts. An exception may be raised.

errno If an error is detected, er r no is set, and the math function returns
to the caller. This method isimplied by the-h conf orm
-h scal ar0, - Q0, - Gn, and - g options.

2.14 Debugging Options

This section describes compiler options used for debugging. Each subsection heading
shows in parentheses the compiler command with which the option can be used.

2.14.1 - Glevel and - g

S-2179-71

The - Glevel and - g options enable the generation of debugging information used
by symbolic debuggers such as Total View. These options allow debugging with
breakpoints. Table 8 describes the values for the - G option.

Table 8. - Glevel Definitions

level Optimization Breakpointsallowed on Debugging Execution speed

-G Rul Function entry and exit Limited Best

-G Partia Block boundaries Better Better

-G None Every executable Best Limited
Statement

Better debugging information comes at the cost of inhibiting certain optimization
techniques, so choose the option that best fits the debugging needs of any particular
source file in an application.

The - g option is equivalent to - Gn. The - g option isincluded for compatibility
with earlier versions of the compiler and many other UNIX systems; the - Goption
isthe preferred specification. The - Gn and - g options disable al optimizations and
imply - Q0.

47

Cray C and C++ Reference Manual

The debugging options take precedence over any conflicting options that appear on
the command line. If more than one debugging option appears, the last one specified
overrides the others.

Debugging is described in more detail in Chapter 11, Debugging Cray C and C++
Code on page 125.

2.14.2 - h [no] bounds (cc)

Default; -h nobounds

The-h bounds option provides checking of pointer and array referencesto ensure
that they are within acceptable boundaries. The - h nobounds option disables
these checks.

The pointer check verifies that the pointer is greater than 0 and less than the machine
memory limit. The array check verifies that the subscript is greater than or equal to 0
and is lessthan the array size, if declared.

2.14.3 -h dir_check

2.14.4 -h zero

The-h dir_check option enables directive checking at run time. Errors detected
at compile time are reported during compilation and so are not reported at run time.
The following directives are checked: shor t | oop, short| oop128, col | apse,
and thel oop_i nf o clausesmin_trips and max_trips. Violation of arun time check
resultsin an immediate fatal error diagnostic.

Warning: Optimization of enclosing and adjacent loops is degraded when run
time directive checking is enabled. This capability, though useful for debugging, is
not recommended for production runs.

The-h zer o option causes stack-allocated memory to be initialized to all zeros.

2.15 Compiler Message Options

48

This section describes compiler options that affect messages. Each subsection
heading shows in parentheses the compiler command with which the option can be
used.

S-2179-71

Invoking the C and C++ Compilers [2]

2.15.1 -h nsgl evel _n

Default: -h nsgl evel _3

The-h nsgl evel _noption specifiesthe lowest level of severity of messages to be
issued. Messages at the specified level and above areissued. Valuesfor n are:

0 Comment
1 Note

2 Caution

3 Warning
4 Error

2.15.2 -h [no] nessage=n[:n...]

Default: Determined by - h nmsgl evel _n

The-h [no] message=n[:n...] option enablesor disables specified compiler
messages, where n is the number of a message to be enabled or disabled. You can
specify more than one message number; multiple numbers must be separated by a
colon with no intervening spaces. For example, to disable messages CC- 174 and
CC- 9, specify:

-h nonessage=174: 9

The- h [no] message=n option overrides- h nsgl evel _n for the specified
messages. If nis not avalid message number, it isignored. Any compiler message

except ERROR, | NTERNAL, and LI M T messages can be disabled; attempts to
disable these messages by using the- h nomessage=n option are ignored.

2.15.3 -h report =args

S-2179-71

The-h report =args option generates report messages specified in args and lets
you direct the specified messagesto afile. The args field can be any combination
of the following options;

f Writes specified messages to file. V, wherefile is the source file
specified on the command line. If thef option is not specified,
messages are written to st derr .

[Generates inlining optimization messages.
S Generates scalar optimization messages.

% Generates vector optimization messages.

49

Cray C and C++ Reference Manual

No spaces are allowed around the equal sign (=) or any of the args codes. For
example, the following example printsinlining and scalar optimization messages for
nyfile.c:

%cc -h report=is nyfile.c

The-h nsgs option also provides optimization messages.

2.15.4 -h [no] abort

Default; -h noabort

The - h [no] abort option controls whether a compilation aborts if an error is
detected.

2155 -h errorlimt

Default; -h errorlimt=100

The-h errorlinit[=n] option specifies the maximum number of error
messages the compiler prints before it exits, where n is a positive integer. Specifying
-h errorlimt=0 disables exiting on the basis of the number of errors.
Specifying-h errorlinmt withno qualifieristhe sameassettingnto 1.

2.16 Compilation Phase Options

2.16.1 -E

50

This section describes compiler options that affect compilation phases. Each
subsection heading shows in parentheses the compiler command with which the
option can be used.

The - E option directs the compiler to execute only the preprocessor phase of the
compiler. The - E and - P options are equivalent, except that - E directs output to
st dout and inserts appropriate #1 i ne linenumber preprocessing directives. The
- E option takes precedence over the- h feonl y, - S, and - ¢ options.

When both the - E and - P options are specified, the last one specified takes
precedence.

S-2179-71

Invoking the C and C++ Compilers [2]

2.16.2 -P

The - P option directs the compiler to execute only the preprocessor phase of the
compiler for each source file specified. The preprocessed output for each source
fileis written to afile with a name that corresponds to the name of the source file
and hasa. i suffix substituted for the suffix of the source file. The- P option is
similar to the - E option, except that #1 i ne linenumber directives are suppressed,
and the preprocessed source does not go to st dout . This option takes precedence
over-h feonly,-S,and-c.

When both the - P and - E options are specified, the last one specified takes
precedence.

2.16.3 -h feonly

2164 -S

2.16.5 -c

The-h feonly option limits the compiler to syntax checking. The optimizer and
code generator are not executed. This option takes precedence over - Sand - c.

The - S option compiles the named source files and |eaves their assembly language
output in the corresponding files suffixed with a. s. If thisoption is used with - Gor
- g, debugging information is not generated. This option takes precedence over - C.

The - ¢ option creates arelocatable object file for each named source file but does not
link the object files. The relocatable object file name corresponds to the name of the
sourcefile. The. o suffix is substituted for the suffix of the source file.

2.16.6 - #, - ##, and - ###

2.16.7 - Wphasg,

S-2179-71

The - # option produces output indicating each phase of the compilation asitis
executed. Each succeeding output line overwrites the previous line.

The - ## option produces output indicating each phase of the compilation asit is
executed.

The - ### option isthe same as - ##, except the compilation phases are not executed.

opt ...

The - Whase option passes arguments directly to a phase of the compiling system.
Table 9 shows the system phases that phase can indicate.

51

Cray C and C++ Reference Manual

Table 9. - Wphase Definitions

phase System phase Command
0 (zero) Compiler CCandcc
a Assembler as
I L oader | d

Arguments to be passed to system phases can be entered in either of two styles. If

spaces appear within a string to be passed, the string is enclosed in double quotes.

When double quotes are not used, spaces cannot appear in the string. Commas can
appear wherever spaces normally appear; an option and its argument can be either

separated by a comma or not separated. If acommais part of an argument, it must
be preceded by the\ character. For example, any of the following command lines
would send - e nane and - s to the loader:

%cc -W,"-e nane -s" file.c
%cc -W,-e, nane,-s file.c
%cc -W,"-enane",-s file.c

Because the preprocessor is built into the compiler, - Wh and - W) are equivalent.

2.16.8 - Y phase, dirname

The-Y phase, dirname option specifies a new directory (dirname) from which the
designated phase should be executed. The values of phase are Table 10.

Table 10. - Y phase Definitions

phase System phase Command
0 (zero) Compiler CC, cc

a Assembler as

I L oader I d

Because there is no separate preprocessor, - Yp and - YO are equivalent.

2.17 Preprocessing Options

This section describes compiler options that affect preprocessing. Each subsection
heading shows in parentheses the compiler command with which the option can be
used.

52 S-2179-71

Invoking the C and C++ Compilers [2]

2171 -C

The - C option retains all comments in the preprocessed source code, except those on
preprocessor directive lines. By default, the preprocessor phase strips comments from
the source code. This option is useful in combination with the - P or - E option.

2.17.2 - D macro[=def]

The - Dmacro[=def] option defines macro asif it were defined by a#def i ne
directive. If no =def argument is specified, macro is defined as 1.

Predefined macros also exist; these are described in Chapter 9, Using Predefined
Macros on page 119. Any predefined macro except those required by the standard
(see Macros Required by the C and C++ Standards on page 120) can be redefined by
the - D option. The - U option overrides the - D option when the same macro nameis
specified, regardless of the order of options on the command line.

2.17.3 - h [no] pragma=name| : name . . .]

S-2179-71

Default: -h pragma (no pragmas diabled)

The[no] pragma=namg[: name. . .] option enables or disables the processing of
specified directives in the source code, where name can be the name of a directive or
aword shown in Table 11 to specify a group of directives. Maore than one name can
be specified. Multiple names must be separated by a colon and have no intervening
spaces.

Table 11. - h pr agna Directive Processing

name Group Directives affected
al | All All directives
allinline Inlining i nl i ne_enabl e,

i nl i ne_disabl e,
inline_reset,

i nli ne_al ways,
i nline_never

al | scal ar Scalar optimization concurrent,
noi nt er change,
nor educt i on, suppr ess,
unrol I / nounrol |

al | vect or Vectorization novector, | oop_i nf o,
hand_t uned, nopattern,
novect or, per mut ati on,
pi pel i ne/ nopi pel i ne,
prefervector,

53

Cray C and C++ Reference Manual

2174 -1

54

incldir

name Group Directives affected

saf e_addr ess,
safe _conditional,
short| oop,shortl oopl28

When using this option to enable or disable individual directives, note that some
directives must occur in pairs. For these directives, you must disable both directivesif
you want to disable either; otherwise, the disabling of one of the directives may cause
errors when the other directiveis (or is not) present in the compilation unit.

The-1 incldir option specifies adirectory for filesnamed in #i ncl ude directives
when the #i ncl ude file names do not have a specified path. Each directory
specified must be specified by a separate - | option.

The order in which directories are searched for files named on #i ncl ude directives
is determined by enclosing the file name in either quotation marks (" ") or angle
brackets (< and >).

Directoriesfor #i ncl ude "file" are searched in the following order:
1. Directory of the input file.

2. Directoriesnamed in - | options, in command-line order.

3. Site-specific and compiler release-specific include files directories.
4. Directory / usr/i ncl ude.

Directoriesfor #i ncl ude <file> are searched in the following order:
1. Directoriesnamedin- | options, in command-line order.

2. Site-specific and compiler release-specific include files directories.
3. Directory / usr /i ncl ude.

If the- | option specifies a directory name that does not begin with aslash (/), the
directory isinterpreted as relative to the current working directory and not relative to
the directory of the input file (if different from the current working directory).

For example:

%cc -1. -1 yourdir nmydir/b.c

S-2179-71

Invoking the C and C++ Compilers [2]

2175 -M

The preceding command line produces the following search order:
1. nydir (#i ncl ude "file" only).
2. Current working directory, specified by - | .

3. yourdi r (relative to the current working directory), specified by - |
yourdir.

4. Site-specific and compiler release-specific include files directories.

5. Directory / usr/i ncl ude.

The - Moption provides information about recompilation dependencies that the source
fileinvokes on #i ncl ude filesand other source files. Thisinformation is printed in
the form expected by make. Such dependencies are introduced by the #i ncl ude
directive. The output is directed to st dout .

2.17.6 -nostdi nc

2.17.7 -U

The - nost di nc option stops the preprocessor from searching for include
files in the standard directories (/ usr/ i ncl ude and for Cray C++ aso
{usr/include/ c++).

The - U option removes any initia definition of macro. Any predefined macro except
those required by the standard (see Macros Required by the C and C++ Standards
on page 120) can be undefined by the - U option. The - U option overrides the - D
option when the same macro name is specified, regardless of the order of options on
the command line.

Predefined macros are described in Chapter 9, Using Predefined Macros on page 119.
Macros defined in the system headers are not predefined macros and are not affected
by the - U option.

2.18 Loader Options

S-2179-71

This section describes compiler options that affect loader tasks. Each subsection
heading shows in parentheses the compiler command with which the option can be
used.

55

Cray C and C++ Reference Manual

2.18.1 -1 libname

2.18.2 - L Idir

56

The- | libname option directs the compiler driver to search for the specified object
library file when loading an executable file. To request more than one library file,
specify multiple - | options.

The compiler driver searches for libraries by prepending Idir/ | i b on the front of
libname and appending . a on the end of it, for each Idir that has been specified by
using the - L option. It usesthefirst file it finds. See also the - L option (- L Idir
on page 56).

There is no search order dependency for libraries. Default libraries are shown in
the following list:

i bC. a (Cray C++ only)
libu.a

l'ibm a

l'ibc.a

l'i bsma. a

libf.a

libfi.a

l'i bsci.a

If you specify personal libraries by using the - | command line option, asin the
following example, those libraries are added to the top of the preceding list. (The- |
option is passed to the loader.)

cc -1 nylib target.c

When the previous command line is issued, the loader looks for alibrary named
i brryl i b. a (following the naming convention) and adds it to the top of the list
of default libraries.

The- L Idir option changesthe - | option search algorithm to look for library files
in directory Idir. To request more than one library directory, specify multiple - L
options.

The loader searches for library filesin the compiler rel ease-specific directories.

Note: Multiple - L options are treated cumulatively as if all Idir arguments
appeared on one - L option preceding al - | options. Therefore, do not attempt
to load functions of the same name from different libraries through the use of
aternating - L and - | options.

S-2179-71

Invoking the C and C++ Compilers [2]

2.18.3 - o outfile

The- o outfile option produces an absolute binary file named outfile. A file named
a. out isproduced by default. When this option is used in conjunction with the - ¢
option and a single source file, arelocatable object file named outfile is produced.

2.19 Miscellaneous Options

This section describes compiler options that affect general tasks. Each subsection
heading shows in parentheses the compiler command with which the option can be
used.

2.19.1 - h cpu=target_system

The- h cpu=target_system option specifies the system on which the absolute
binary file isto be executed. The target_system can be x86- 64, opt er on,

bar cel ona, shanghai , ori st anbul . The default isx86- 64. You can use
the CRAY_PE_TARCGET environment variable to set the target system; see Compile
Time Environment Variables on page 61. For more information, see the Cray XT
Programming Environment User's Guide.

2.19.2 - h i dent =name
Default: File name specified on the command line

The- h i dent =name option changesthei dent name to name. Thisnameis used
as the module name in the object file (. 0 suffix) and assembler file (. s suffix).
Regardless of whether the name is specified or the default name is used, the following
transformations are performed on name:

* All. charactersinthei dent name are changed to $.

» If thei dent name starts with anumber, a$ is added to the beginning of the
i dent name.

2.19.3 -h keepfiles

The- h keepfi | es option prevents the removal of the object (. 0) files after an
executableis created. Normally, the compiler automatically removes these files after
linking them to create an executable. Since the original object files are required to
instrument a program for performance analysis, if you plan to use CrayPat to conduct
performance analysis experiments, you can use this option to preserve the object files.

S-2179-71 57

Cray C and C++ Reference Manual

2.19.4 -h net wor k=nic

The-h net wor k=nic option specifies the target machine's system interconnection
network. Currently, the only supported value for nicisseast ar .

2.19.5 -h [no] onp
Default: -h omp

The-h [no] onp option enables or disables compiler recognition of OpenMP
pragmas. For details, see Chapter 4, Using OpenMP on page 93.

2.19.6 -h prototype_intrinsics

The-h prototype_intrinsics option simulates the effect of including

i ntrinsics. h atthe beginning of a compilation. Use this option if the source
code does not include thei nt ri nsi cs. h statement and you cannot modify the
code. Thisoption is off by default. For details, see Appendix D, Using Intrinsic
Functions on page 171.

2.19.7 -h taskn

Default: -h taskO

The - h t askn option enables tasking in applications that contain OpenMP

directives.

n Description

0 Disables tasking. OpenMP directives are ignored. Using this
option can reduce compile time and the size of the executable. The
-h taskO option is compatible with all vectorization and scalar
optimization levels.

1 The-h taskl option specifies user tasking, so OpenMP directives

are recognized. No level for scalar optimization is enabled
automatically. The-h taskl option is compatible with all
vectorization and scalar optimization levels.

58 S-2179-71

Invoking the C and C++ Compilers [2]

2.19.8 -h [no]threadsafe

Default: -h threadsaf e

The-h [no]threadsaf e option enables or disables the generation of threadsafe
code. Code that is threadsafe can be used with pthreads and OpenMP. Thisoptionis
not binary-compatible with code generated by Cray C 8.1 or Cray C++ 5.1 and earlier
compilers. Users who need binary compatibility with previously compiled code can
use- h not hr eadsaf e, which causes the compiler to be compatible with Cray C
8.1 or Cray C++ 5.1 and earlier compilers at the expense of not being threadsafe.

C or C++ code compiled with - h t hr eadsaf e (the default) cannot be linked with
C or C++ code compiled with - h not hr eadsaf e or with code compiled with a
Cray C 8.1, Cray C++ 5.1, or earlier compiler.

2.19.9 - h upc (cc)

2.19.10 -V

2.19.11 - X npes

S-2179-71

The-h upc option enables compilation of Unified Parallel C (UPC) code. UPCisa
C language extension for parallel program development that allows you to explicitly
specify parallel programming through language syntax rather than through library
functions such as are used in MPl or SHMEM.

The Cray implementation of UPC is discussed in Chapter 5, Using Cray Unified
Parallel C (UPC) on page 99.

The - V option displays compiler version information. |f the command line specifies
no source file, no compilation occurs.

Version information consists of the product name, the version number, and the current
date and time, as shown in the following example:
% CC -V

[opt/cray/ xt-asyncpe/2.5/bin/CC. INFO native target is being used
Cray C++ : Version 7.1.0.129 Thu May 21, 2009 12:59:44

The - X npes option specifies the number of processing elements (PEs) that will be
specified through apr un at job launch. The value for npes ranges from 1 through
65535 inclusive.

Ensure that you compile all object files with the same - X npes value and run the
resulting executable with that number of PEs. If you use mixed - X npes values or
if the number of PEs provided at run time differs from the - X npes value, program
behavior is undefined.

59

Cray C and C++ Reference Manual

The number of PEsto use cannot be changed at load or run time. You must recompile
the program with a different value for npes to change the number of PEs.

For further information about running applications, see the Cray XT Programming
Environment User's Guide or the apr un(1) man page.

2.20 Command Line Examples

60

The following examplesiillustrate a variety of command lines for the C and C++
compiler commands:

Example 1. CC - X8 -h instantiate=all nyprog.C

This example compiles my pr og. C, fixes the number of processing elementsto 8,
and instantiates all template entities declared or referenced in the compilation unit.

% CC -X8 -h instantiate=all myprog.C

Example 2. CC -h conform -h noautoi nstantiate nyprog.C

This example compiles nypr og. C. The- h conf or moption specifies strict
conformance to the ISO C++ standard. No automatic instantiation of templates
is performed.

% CC -h conform-h noautoinstantiate nyprog.C

Example 3. cc -¢c -h ipal myprog.c subprog.c

This example compiles input files nypr og. ¢ and subpr og. ¢. The - ¢ option
tells the compiler to create object files mypr og. o and subpr og. o but not call
the loader. Option- h i pal tellsthe compiler to inline function calls marked with
thei nl i ne_al ways pragma.

%cc -c -h ipal nmyprog.c subprog.c
Example 4. cc -1. disc.c vend.c

This example specifies that the compiler search the current working directory,
represented by aperiod (.), for #i ncl ude files before searching the default
#i ncl ude file locations.

%cc -1. disc.c vend.c

Example 5. cc -P - D DEBUG newpr og. c

This example specifies that source file newpr og. ¢ be preprocessed only.
Compilation and linking are suppressed. In addition, the macro DEBUG is defined.

% cc -P -D DEBUG newprog. c

S-2179-71

Invoking the C and C++ Compilers [2]

Example 6. cc -c -h report=s nydatal.c

This example compilesnmydat al. c, creates object filemydat al. o, and produces
a scalar optimization report to st dout .

%cc -c -h report=s nydatal.c
Example 7. CC -h ipab,report=if nyfile.C

This example compilesmyf i | e. Cand tellsthe compiler to attempt to aggressively
inline calls to functions defined within nyf i | e. C. Aninlining report is directed to
nyfile.V.

% CC -h ipa5,report=if nyfile.C

2.21 Compile Time Environment Variables

S-2179-71

The following environment variables are used during compilation.
Variable Description
CRAYOLDCPPLI B

When set to a nonzero value, enables C++ code to use the following
nonstandard Cray C++ headers files:

e common. h

e conplex.h

e fstreamh

e generic.h

e iomanip.h

e jostreamh

e stdiostreamh
e streamh

e strstreamh

e vector.h

If you want to use the standard header files, your code may require
modification to compile successfully. For more information, see
Appendix B, Using Cray C and C++ Dialects on page 151.

Note: Setting the CRAYOLDCPPLI B environment variable
disables exception handling, unless you compile with the - h
excepti ons option.

61

Cray C and C++ Reference Manual

CRAY_PE_TARGET

Specifies the target system to be used as the default in all
compilations. Valid options are x86- 64, opt er on, bar cel ona,
shanghai , andi st anbul . It isoverridden by the - hcpu=target
option (see- h cpu=target_system on page 57). If unset, the default
target isx86- 64.

CRI _CC_OPTI ONS
CRl _cc_OPTI ONS

62

Specifies command line options that are applied to all compilations.
Options specified by this environment variable are added following
the options specified directly on the command line. Thisis especially
useful for adding options to compilations done with build tools.

Identifies your requirements for native language, local customs, and
coded character set with regard to compiler messages.

Controls the format in which you receive compiler messages.
Specifies the message system catalogs that should be used.

Specifies the number of processes used for simultaneous
compilations The default is 1. When more than one source fileis
specified on the command line, compilations may be multiprocessed
by setting the environment variable NPROC to a value greater than 1.
You can set NPROC to any value; however, large values can overload
the system.

S-2179-71

Invoking the C and C++ Compilers [2]

2.22 Run Time Environment Variables

APRUN_XFER LI M TS

The default behavior for forwarding of user resource limits to
compute nodes has changed in CLE 2.2. The apr un utility no
longer forwards its user resource limits to each compute node
(except for RLI M T_CORE and RLI M T_CPU, which are aways
forwarded). This CLE 2.2 default is the recommended behavior for
CCE users.

In CLE 2.1, it is recommended that you set the
APRUN_XFER LI M TS environment variable to 0 (expor t
APRUN_XFER_LI M TS=0 or set env APRUN_XFER LI M TS
0) to disable the forwarding of user resource limits. For more
information, seethegetr 1 i m t (P) man page.

Note: It is recommended that CLE 2.1 site administrators

set APRUN_XFER_LI M TS to O in the default shells

(/ et c/ bash. bashrc. | ocal , for example) to avoid run time
segmentation faults due to exceeding the stack size limit.

2.23 OpenMP Environment Variables

S-2179-71

For Cray-specific information about OpenM P environment variables, see Chapter 4,
Using OpenMP on page 93. For documentation of standard OpenMP environment
variables, see the OpenMP Application Program Interface Version 3.0 May 2008
standard (http://openmp.org/wp/openmp-specifications/).

63

http://openmp.org/wp/openmp-specifications/

Cray C and C++ Reference Manual

64 S-2179-71

Using #pr agma Directives [3]

S-2179-71

The#pr agma directives are used within the source program to request certain kinds
of special processing. The directives are part of the C and C++ languages, but the
meaning of any #pr agma directive is defined by the implementation. #pr agma
directives are expressed in the following form:

#pragma [_CRI] identifier [arguments)

The _CRI specification is optional; it ensures that the compiler will issue a message
concerning any directives that it does not recognize. Diagnostics are not generated for
directives that do not contain the _CRI specification.

These directives are classified according to the following types:
* Genera (General Directives on page 67)

e Instantiation, Cray C++ (Instantiation Directives on page 76)
» Vectorization (Vectorization Directives on page 76)

e Scalar (Scalar Directives on page 84)

* Inlining (Inlining Directives on page 89)

Macro expansion occurs on the directive line after the directive name. That is, macro
expansion is applied only to arguments.

Note: OpenMP #pr agma directives are described in Chapter 4, Using OpenMP
on page 93.

At the beginning of each section that describes a directive, information isincluded
about the compilers that allow the use of the directive and the scope of the directive.
Unless otherwise noted, the following default information applies to each directive:

Compiler: Cray C and Cray C++
Scope: Local and global

The scoping list may also indicate that a directive has alexical block scope. A lexical
block is the scope within which adirective is on or off and is bounded by the opening
curly brace just before the directive was declared and the corresponding closing curly
brace. Only applicable executable statements within the lexical block are affected

as indicated by the directive. The lexical block does not include the statements
contained within a procedure that is called from the lexical block.

65

Cray C and C++ Reference Manual

This example code fragment shows the lexical block for theupc strict andupc
r el axed directives:

voi d Exanpl e(voi d)

{
#pragma _CRl upc strict // UPC strict state is on

// UPC strict state is still on
#pragma _CRI upc relaxed // UPC strict state is now off

}

/1 UPC strict state is back on

}

3.1 Protecting Directives

To ensure that your directives are interpreted only by the Cray C and C++ compilers,
use the following coding technique in which directive is the name of the directive:

#if _CRAYC
#pragma _CRI directive
#endi f

This ensures that other compilers used to compile this code will not interpret the
directive. Some compilers diagnose any directives that they do not recognize. The
Cray C and C++ compilers diagnose directives that are not recognized only if the
_CRI specification is used.

3.2 Directives in Cray C++

C++ prohibits referencing undeclared objects or functions. Objects and functions
must be declared prior to using them in a#pr agma directive. Thisis not always the
case with C.

Some #pr agna directives take function names as arguments (for example:
#pragnma _CRI weak, #pragma _CRI suppress,and#pragma _CRI

i nline_always name[, name ...]). Member functions and qualified names
are allowed for these directives.

3.3 Loop Directives

Many directives apply to groups. Unless otherwise noted, these directives must
appear beforeaf or, whi | e, or do whi | e loop. These directives may also appear
beforealabel fori f. .. got o loops. If aloop directive appears before alabel that is
not thetop of ani f. . . got o loop, it isignored.

66 S-2179-71

Using #pr agnma Directives [3]

3.4 Alternative Directive Form: _Pragma

Compiler directives can also be specified in the following form, which has the
advantage in that it can appear inside macro definitions:

_Pragma("_CRI identifier");

This form has the same effect as using the #pr agma form, except that everything
that appeared on the line following the #pr agma must now appear inside the double
guotation marks and parentheses. The expression inside the parentheses must be a
single string literal; it cannot be a macro that expandsinto a string literal. _Pr agnma
is an extension to the C and C++ standards.

The following is an example using the #pr agna form:

#pragma _CRl concurrent

The following is the same example using the alternative form:

_Pragma("_CRI concurrent");

In the following example, the loop automatically vectorizes wherever the macro is
used:

#define _str(_X) # X
B

#define COPY(_A _ N

{
int i;
_Pragma("_CRI concurrent")
_Pragma(_str(_CRI loop_info cache_nt(_B)))
for (i =0; i <_N i++) {
_AT] = B[]
}
}

voi d
copy_data(int *a, int *b, int n)

COPY(a, b, n);
}

Macros are expanded in the string literal argument for _Pr agna in an identical
fashion to the general specification of a#pr agna directive.

3.5 General Directives

General directives specify compiler actions that are specific to the directive and
have no similarities to the other types of directives. The following sections describe
general directives.

S-2179-71 67

Cray C and C++ Reference Manual

3.5.1 [no] bounds Directive

Thebounds directive specifies that pointer and array references are to be checked.
Thenobounds directive specifies that this checking is to be disabled.

When bounds checking is in effect, pointer references are checked to ensure that
they are neither 0 nor greater than the machine memory limit. Array references are
checked to ensure that the array subscript is not less than O or greater than or equal to
the declared size of the array.

Both directives may be used only within function bodies. They apply until the end
of the function body or until another bounds/nobounds directive appears. They
ignore block boundaries.

These directives have the following format:

#pragma _CRl bounds
#pragnma _CRI nobounds

The following example illustrates the use of the bounds directive:

int a[30];
#pragnma _CRl bounds
voi d f(void)
{ .
int x;
x = a[30];

3.5.2 dupl i cat e Directive

68

Scope: Global

Thedupl i cat e directive lets you provide additional, externally visible names
for specified functions. You can specify duplicate names for functions by using a
directive with one of the following forms:

#pragnma _CRI duplicate actual as dupname. ..
#pragma _CRl duplicate actual as (dupname...)

The actual argument is the name of the actual function to which duplicate names will
be assigned. The dupname list contains the duplicate names that will be assigned to
the actual function. The dupname list may be optionally parenthesized. The word as
must appear as shown between the actual argument and the comma-separated list

of dupname arguments.

Thedupl i cat e directive can appear anywhere in the source file and it must appear
in global scope. The actual name specified on the directive line must be defined
somewhere in the source as an externally accessible function; the actual function
cannot have a static storage class.

S-2179-71

Using #pr agnma Directives [3]

S-2179-71

The following example illustrates the use of the dupl i cat e directive:

#i ncl ude <conpl ex. h>

extern void maxhits(void);

#pragma _CRl duplicate maxhits as count, quantity [* OK */

voi d maxhits(void)

{

#pragnma _CRI duplicate nmaxhits as tenpcount
/* Error: #pragma _CRl duplicate can't appear in |local scope */

}

doubl e _Conplex minhits

#pragnma _CRI duplicate minhits as lower_limt
/* Error: mnhits is not declared as a function */

extern void derivspeed(void);

#pragma _CRlI duplicate derivspeed as acce
[* Error: derivspeed is not defined */

static void endtine(void)

{
}

#pragnma _CRI duplicate endtine as limt
/* Error: endtinme is defined as a static function */

Because duplicate names are simply additional names for functions and are not

functions themselves, they cannot be declared or defined anywhere in the compilation

unit. To avoid aliasing problems, duplicate names may not be referenced anywhere
within the source file, including appearances on other directives. In other words,

duplicate names may only be referenced from outside the compilation unit in which

they are defined.

The following example references duplicate names:

voi d converter(void)

{
}

structured(void);

#pragma _CRI duplicate converter as factor, nultiplier /* OK */

voi d remai nder (voi d)

{
}

#pragma _CRI duplicate renainder as factor, structured
/* Error: factor and structured are referenced in this file */

Duplicate names can be used to provide alternate external names for functions, as

shown in the following examples.

69

Cray C and C++ Reference Manual

mai n. c:

extern void fctn(void), FCTN(void);

mai n()

{
fctn();

FCTN() ;
}

fctn.c:

#i ncl ude <stdio. h>

voi d fctn(void)

{
printf("Hello world\n");

}

#pragma _CRl duplicate fctn as FCIN

Filesmai n. ¢ and f ct n. ¢ are compiled and linked using the following command
line:

%cc main.c fctn.c

When the executable file a. out isrun, the program generates the following outpuit:

Hell o world
Hell o world

3.5.3 nessage Directive

70

The message directive directs the compiler to write the message defined by text to
st derr asawarning message. Unlikethe er r or directive, the compiler continues
after processing anessage directive. The format of this directiveis asfollows:

#pragma _CRl nessage "text"
The following example illustrates the use of the message compiler directive:

#define FLAG 1

#i f def FLAG

#pragnm _CRl nessage "FLAG is Set"

#el se

#pragnma _CRI nessage "FLAG is NOT Set"
#endi f

S-2179-71

Using #pr agnma Directives [3]

3.5.4 cache Directive

The cache directive asserts that all memory operations with the specified symbols
as the base are to be alocated in cache. Thisis an advisory directive. Thecache
directive is meaningful for storesin that it allows the user to override a decision made
by the automatic cache management. This directive may be locally overridden by the
use of a#pragma | oop_i nf o directive. This directive overrides automatic cache
management decisions (see- h cachen).

To use the directive, you must place it only in the specification part, before any
executable statement.

The format of the cache directiveis:

#pragnma _CRI cache base_name [, base name ..]

base_name The base name of the object that should be placed into the cache.
This can be the base name of any object such as an array, scalar
structure, and so on, without member references like C[10] . If you
specify apointer in the list, only the references, not the pointer itself,
are cached.

3.5.5 cache_nt Directive

Thecache_nt directiveis an advisory directive that specifies objects that should
use non-temporal reads and writes. Use this directive to identify objects that should
not be placed in cache.

The format of thecache_nt directiveis:

#pragma _CRl cache_nt base name [, base name . . .]

base_name The base name of the object that should use non-temporal reads and
writes. This can be the base name of any object such as an array,
scalar structure, and so on, without member references like C[10] .
If you specify a pointer in the list, only the references, not the pointer
itself, have the cache non-temporal property.

This directive overrides the automatic cache management level that was specified
using the- h cachen option on the compiler command line. This directive may be
overridden locally by use of al oop_i nf o directive.

S-2179-71 71

Cray C and C++ Reference Manual

3.5.6 |1 dent Directive

Thei dent pragma directs the compiler to store the string indicated by text into
the object (. 0) file. This can be used to place a source identification string into an
object file.

The format of this directive is as follows:

#pragnma _CRI ident text

3.5.7 [no] opt Directive

72

Scope: Global

Thenoopt directive disables all automatic optimizations and causes optimization
directives to be ignored in the source code that follows the directive. Disabling
optimization removes various sources of potential confusion in debugging. The opt
directive restores the state specified on the command line for automatic optimization
and directive recognition. These directives have globa scope and override related
command line options.

The format of these directives is as follows:

#pragma _CRl opt
#pragma _CRl noopt

The following example illustrates the use of the opt and noopt compiler directives:

#i ncl ude <stdi o. h>

voi d subl(void)
{

}

printf("lIn subl, default optimzation\n");

#pragma _CRI noopt
voi d sub2(voi d)
{

}
#pragma _CRl opt

printf("lIn sub2, optimzation disabled\n");

voi d sub3(void)

{ printf("lIn sub3, optimzation enabled\n");
}
mai n()
{
printf("Start main\n");
subl();
sub2();
sub3();
}

S-2179-71

Using #pr agnma Directives [3]

3.5.8 aut ot hr ead, noaut ot hr ead Directives

Scope: Local

Theaut ot hr ead and noaut ot hr ead directives turn autothreading on and off for
selected blocks of code.

The format of these directivesis as follows:

#pragma _CRI aut ot hread
#pragnma _CRl noaut ot hr ead

3.5.9 Probability Directives

S-2179-71

The probabi lity, probability_al nost_al ways, and
probability_al nost _never directives specify information used by
interprocedure analysis (IPA) and the optimizer to produce faster code sequences.
The specified probability is a hint, rather than a statement of fact. You can also
specify al nost _never and al nost _al ways by using the values 0.0 and 1.0,
respectively.

These directives have the following format:

#pragnma probability const
#pragma probability_al nost_al ways
#pragnma probability_al nost_never

const is an expression that evaluates to a floating point constant at compilation time.
(0.0 <= const <= 1.0.)

These directives can appear anywhere executable code is legal.

Each directive applies to the block of code where it appears. It isimportant to realize
that the directive should not be applied to a conditional test directly; rather, it should
be used to indicate the relative probability of at hen or el se branch being executed.

Example:

if (a[i] >b[i]) {
#pragnma probability 0.3
afi] = b[i];
}
This example states that the probability of entering the block of code with the
assignment statement is 0.3 or 30%. Thisalso meansthat a[i | is expected to be
greater than b[i] 30% of the time.

Note that the pr obabi | i t'y directive appears within the conditional block of code,
rather than before it. This removes some of the ambiguity that has plagued other
implementations that tie the directive directly to the conditional code.

This information is used to guide inlining decisions, branch elimination
optimizations, branch hint marking, and the choice of the optimal algorithmic
approach to the vectorization of conditional code.

73

Cray C and C++ Reference Manual

The following GCC-style intrinsic is also accepted when it appears in a conditional
test:

__builtin_expect(expr, const)

The following example:

if (__builtin_expect(a[i] > b[i], 0)) {
afi] = b[i];

}

is roughly equivaent to:

if (a[i] > b[i]) {
#pragnma _CRI probability_al nost_never
a[i] = b[i];
}

3.5.10 weak Directive

74

Scope: Globa

Theweak directive specifies an external identifier that may remain unresolved
throughout the compilation. A weak external reference can be areferenceto a
function or to a data object. A weak external does not increase the total memory
requirements of your program.

Declaring an object as aweak external directs the loader to do one of these tasks:

« Link the object only if it isalready linked (that is, if a strong reference exists);
otherwise, leave it is as an unsatisfied external. The loader does not display an
unsatisfied external message if weak references are not resolved.

» |If astrong reference is specified in the weak directive, resolve all weak
references to it.

Note: The loader treats weak externals as unsatisfied externals, so they remain
silently unresolved if no strong reference occurs during compilation. Thus, it is
your responsibility to ensure that run time references to weak external names do
not occur unless the loader (using some "strong” reference elsewhere) has actually
loaded the entry point in question.

These are the forms of the weak directive:

#pragm _CRl weak var
#pragnm _CRl weak syml = sym?2

var The name of an external

syml Defines an externally visible weak symbol

sym2 Defines an externally visible strong symbol defined in the current
compilation.

S-2179-71

Using #pr agnma Directives [3]

S-2179-71

The first form allows you to declare one or more weak references on oneline. The
second form allows you to assign a strong reference to aweak reference.

Theweak directive must appear at global scope.

The attributes that weak externals must have depend on the form of the weak directive
that you use:

* First form, weak externals must be declared, but not defined or initialized, in
the source file.

» Second form, weak externals may be declared, but not defined or initialized, in
the source file.

» Either form, weak externals cannot be declared with ast at i ¢ storage class.

The following example illustrates these restrictions:

extern long x;

#pragma _CRI weak x /* x is a weak external data object */
extern void f(void);

#pragma _CRI weak f /* f is a weak external function */

extern void g(void);
#pragm _CRI weak g=fun; /* g is a weak external function
with a strong reference to fun */

long y = 4;
#pragnma _CRI weak y /* ERROR - y is actually defined */

static long z;
#pragnma _CRI weak z /* ERROR - z is declared static */

voi d fctn(void)

{
#pragma _CRI weak a /* ERROR - directive nmust be at gl obal scope */

}

75

Cray C and C++ Reference Manual

3.6 Instantiation Directives

The Cray C++ compiler recognizes three instantiation directives. Instantiation
directives can be used to control the instantiation of specific template entities or sets
of template entities. The following directives are described in detail in Instantiation
#pr agma Directives on page 111:

e #pragma _CRlI instantiate
e #pragma _CRI do_not_instantiate
e #pragma _CRlI can_instantiate

e The#pragma _CRI instanti at e directive causes a specified entity to be
instantiated.

e The#pragma _CRI do_not _instanti at e directive suppresses the
instantiation of a specified entity. It istypically used to suppress the instantiation
of an entity for which a specific definition is supplied.

e The#pragma _CRI can_instanti at e directiveindicates that a specified
entity can be instantiated in the current compilation but need not be. It isused in
conjunction with automatic instantiation to indicate potential sites for instantiation
if the template entity is deemed to be required by the compiler.

For more information about template instantiation, see Chapter 7, Using Cray
C++ Template Instantiation on page 105.

3.7 Vectorization Directives

Because vector operations cannot be expressed directly in Cray C and C++, the
compilers must be capable of vectorization, which means transforming scalar
operations into equivalent vector operations. The candidates for vectorization are
operations in loops and assignments of structures.

The subsections that follow describe the compiler directives used to control
vectorization.

3.7.1 hand_t uned Directive

76

The format of this directiveis;

#pragma _CRI hand_t uned

This directive asserts that the code in the loop nest has been arranged by hand for
maximum performance, and the compiler should restrict some of the more aggressive
automatic expression rewrites. The compiler should still fully optimize and vectorize
the loop within the constraints of the directive.

S-2179-71

Using #pr agnma Directives [3]

The hand_t uned directive applies to the next loop in the same manner as the
concurrent andsaf e_addr ess directives.

Warning: Use of thisdirective may severely impede performance. Use carefully
and evaluate before and after performance.

3.7.2 1 oop_i nf o Directive

S-2179-71

Scope: Local

Thel oop_i nf o directive allows additional information to be specified about
the behavior of aloop, including run time trip count and hints on cache allocation

strategy.

In regard to trip count information, the | oop_i nf o directiveis similar to the
short| oop or short | oopl28 directive but provides more information to the
optimizer and can produce faster code sequences. | oop_i nf o isused immediately
before af or loop to indicate minimum, maximum, or estimated trip count. The
compiler will diagnose misuse at compile time (when able) or when option - h

di r _check is specified at run time.

For cache allocation hints, thel oop_i nf o directive can be used to override default
settings, cache or cache_nt directives, or override automatic cache management
decisions. The cache hints are local and apply only to the specified loop nest.

The format of this directiveis;

#pragma _CRI loop_info [mn_trips(c)] [est_trips(c)] [max_trips(c)]

[cache(symbol[, symbol ...])]
[cache_nt (symbol[, symbol ...])]

[prefetch] [noprefetch]
Thepr ef et ch and nopr ef et ch options are deferred.

c An expression that evaluates to an integer constant at compilation
time.

mn_trips Specifies guaranteed minimum number of trips.
est _trips Specifiesestimated or average number of trips.
max_trips Specifies guaranteed maximum number of trips.

cache Specifies that symbol isto be allocated in cache; thisis the default if
no hint is specified and the cache_nt directiveis not specified.

cache_nt Specifies that symbol is to use non-temporal reads and writes.

prefetch Specifies a preference that prefetches be performed for the following
loop.

nopr ef et ch Specifies a preference that no prefetches be performed for the
following loop.

77

Cray C and C++ Reference Manual

symbol The base name of the object that should not be placed into the cache.
This can be the base name of any object (such as an array or scalar
structure) without member references like C[10] . If you specify
apointer in the list, only the references, not the pointer itself, have
the no cache alocate property.

Example 8. Trip counts

In the following example, the minimum trip count is 1 and the maximum trip count
is 1000:

voi d
| oop_i nfo(double *restrict a, double *restrict b, double sl1, int n)

{
int i;

#pragma _CRI loop_info mn_trips(1l) max_trips(1000), cache_nt(b)
for (i =0; i<n; i++) {
if(a[i] '= 0.0 {
a[i] = a[i] + b[i]*s1;
}
}
}

3.7.3 loop_info prefer_thread, prefer_not hread Directives

Scope: Loca

Use these directives to indicate a preference for turning threading on or off for
selected loops. Usethel oop_i nf o pref er _t hr ead directive to indicate your
preference that the loop following the directive be threaded. Thel oop_i nf o

pr ef er _not hr ead indicates your preference that the loop following the directive
should not be threaded.

The format of these directivesis:

#pragma _CRI loop_info prefer_thread
#pragma _CRI | oop_info prefer_nothread

3.7.4 nopattern Directive

78

Scope: Local

The nopat t er n directive disables pattern matching for the loop immediately
following the directive.

The format of this directive is as follows:

#pragma _CRI nopattern

S-2179-71

Using #pr agnma Directives [3]

3.7.5 novect or

3.7.6 pernut ati

S-2179-71

By default, the compiler detects coding patterns in source code sequences and
replaces these sequences with calls to optimized library functions. In most cases,
this replacement improves performance. There are cases, however, in which this
substitution degrades performance. This can occur, for example, in loops with very
low trip counts. In such a case, you can usethe nopat t er n directive to disable
pattern matching and cause the compiler to generate inline code.

In the following example, placing the nopat t er n directive in front of the outer loop
of anested loop turns off pattern matching for the matrix multiply that takes place
inside the inner loop:

doubl e a[100][100], b[100][100], c[100][100];

voi d nopat (i nt n)
{

int i, j, k;
#pragma _CRI nopattern

for (i=0; i <n; ++i) {

for (j =0, <n; ++) {
for (k =0; k <n; ++k) {
clillj] +=ali][k] * b[K][j];

Directive
Scope: Local

Thenovect or directive directs the compiler to not vectorize the loop immediately
following the directive. It overrides any other vectorization-related directives, as well
asthe- h vect or command line option. The format of this directiveis asfollows:

#pragma _CRlI novect or
The following example illustrates the use of thenovect or compiler directive:
#pragma _CRl novector
for (i =0; i <h; i++) { /* Loop not vectorized */
af[i] = b[i] + c[i];
}

on Directive

Theper mut at i on directive specifies that an integer array has no repeated val ues.
This directive is useful when the integer array is used as a subscript for another array
(vector-valued subscript). This directive may improve code performance.

This directive has the following format:

#pragnma _CRI pernutation symbol [, symbol]

79

Cray C and C++ Reference Manual

In a sequence of array accesses that read array element values from the specified
symbols with no intervening accesses that modify the array element values, each of
the accessed elements will have a distinct value.

When an array with a vector-valued subscript appears on the left side of the equal
sign in aloop, many-to-one assignment is possible. Many-to-one assignment occurs if
any repeated elements exist in the subscripting array. If it is known that the integer
array is used merely to permute the elements of the subscripted array, it can often be
determined that many-to-one assignment does not exist with that array reference.

Sometimes a vector-valued subscript is used as a means of indirect addressing
because the elements of interest in an array are sparsely distributed; in this case, an
integer array is used to select only the desired elements, and no repeated elements
exist in the integer array, as in the following example:
int *ipnt;
#pragma permutation ipnt
" tor (i =0 i <N i++) {
afipnt[i]] = b[i] + c[i];
}

The permutation directive does not apply to the array a. Rather, it appliesto the
pointer used to index intoit, i pnt . By knowing that i pnt isa permutation, the
compiler can safely generate an unordered scatter for the write to a.

3.7.7 [no] pi pel i ne Directive

80

Software-based vector pipelining (software vector pipelining) provides additional
optimization beyond the normal hardware-based vector pipelining. In software vector
pipelining, the compiler analyzes all vector loops and automatically attempts to
pipeline aloop if doing so can be expected to produce a significant performance gain.
This optimization also performs any necessary loop unrolling.

In some cases the compiler either does not pipeline aloop that could be pipelined or
pipelines aloop without producing performance gains. In these situations, you can
usethe pi pel i ne or nopi pel i ne directive to advise the compiler to pipeline or
not pipeline the loop immediately following the directive.

Software vector pipelining isvalid only for the innermost loop of aloop nest.

The pi pel i ne and nopi pel i ne directives are advisory only. While you can
use the nopi pel i ne directive to inhibit automatic pipelining, and you can use the
pi pel i ne directive to attempt to override the compiler's decision not to pipeline a
loop, you cannot force the compiler to pipeline aloop that cannot be pipelined.

L oops that have been pipelined are so noted in loopmark listing messages.

The formats of the pipelining directives are as follows:

#pragma _CRlI pipeline
#pragma _CRl nopi pel i ne

S-2179-71

Using #pr agnma Directives [3]

3.7.8 prefervect or Directive
Scope: Local

Thepr ef er vect or pragmadirects the compiler to vectorize the loop immediately
following the directive if the loop contains more than one loop in the nest that can be
vectorized. The directive states a vectorization preference and does not guarantee that
the loop has no memory-dependence hazard.

The format of this directiveis:

#pragnma _CRl prefervector

The following example illustrates the use of the pr ef er vect or directive:
float a[1000], b[100][1000];

voi d
f(int m int n)
int i, j;
#pragma _CRl prefervector
for (i =0; i <n; i++) {
for (j =0,] <m j++) {
} ali] += b[j][i];

}
}

In this example, both loops can be vectorized, but the directive directs the compiler to
vectorize the outer f or loop. Without the directive and without any knowledge of
n and m the compiler would vectorize the inner loop.

3.7.9 pgo | oop_i nf o Directive
Scope: Local
The format of this directiveis as follows:
#pragma _CRI pgo | oop_info

Thepgo | oop_i nf o directive enables profile-guided optimizations by tagging
loopmark information as having come from profiling. For information about CrayPat
and profile information, see the Using Cray Performance Analysis Tools guide.

3.7.10 saf e_addr ess Directive
Scope: Local

The format of this directive is as follows:

#pragnma _CRl safe_address

S-2179-71 81

Cray C and C++ Reference Manual

82

Thesaf e_addr ess directive specifies that it is safe to speculatively execute
memory references within all conditional branches of aloop. In other words, you
know that these memory references can be safely executed in each iteration of the
loop.

For most code, the saf e_addr ess directive can improve performance significantly
by preloading vector expressions. However, most loops do not require this directive
to have preloading performed. The directiveis required only when the safety of the
operation cannot be determined or index expressions are very complicated.

Thesaf e_addr ess directiveis an advisory directive. That is, the compiler may
override the directive if it determines the directive is not beneficial.

If you do not use the directive on aloop and the compiler determines that it would
benefit from the directive, it issues amessage indicating such. The messageis similar
to this:

CC-6375 cc: VECTOR File = ctest.c, Line = 6
A |l oop woul d benefit from "#pragna safe_address".

If you use the directive on aloop and the compiler determines that it does not benefit
from the directive, it issues a message that states the directive is superfluous and
can be removed.

To see the messages, you must usethe- h report=v or-h nsgs option.

Caution: Incorrect use of the directive can result in segmentation faults, bus errors,
or excessive page faulting. However, it should not result in incorrect answers.
Incorrect usage can result in very severe performance degradations or program
aborts.

In the example below, the compiler will not preload vector expressions, because the
value of j isunknown. However, if you know that referencestob[i][]] issafe
to evaluate for all iterations of the loop, regardliess of the condition, you can use the
saf e_addr ess directive for this loop as shown below:

voi d x3(double a[restrict 1000], int j)
{ . .
int i;
#pragnma _CRl safe_address
for (i =0; i <1000; i++) {
if (afi] '=0.0) {
b{j][i] = 0.0;

}

With the directive, the compiler can safely load b[i] [j] asavector, merge0. O
where the condition istrue, and store the resulting vector safely.

S-2179-71

Using #pr agnma Directives [3]

3.7.11 safe_condi ti onal Directive

Thesaf e_condi ti onal directive specifiesthat it is safe to execute al references
and operations within all conditional branches of aloop. In other words, you know
that these memory references can be safely executed in each iteration of the loop.
This directive specifies that memory and arithmetic operations are safe.

This directive applies to scalar and vector loop nests. It can improve performance by
allowing the hoisting of invariant expressions from conditional code and by allowing
prefetching of memory references.

Thesaf e_condi ti onal directiveisan advisory directive. That is, the compiler
may override the directiveif it determines the directive is not beneficial.

Caution: Incorrect use of the directive can result in segmentation faults, bus errors,

A excessive page faulting, or arithmetic aborts. However, it should not result in
incorrect answers. Incorrect usage can result in severe performance degradations
or program aborts.

Thesaf e_condi ti onal directive has the following format:

#pragma _CRl safe_conditional

In the following example, without the saf e_condi t i onal directive, the compiler
cannot precompute the invariant expression s 1* s2 because their values are unknown
and may cause an arithmetic trap if executed unconditionally. However, if you know
that the condition istrue at least once, then s1* s2 is safe to speculatively execute.
Thesaf e_condi ti onal compiler directive can be used to imply the safety of the
operation. With the directive, the compiler evaluates s1* s2 outside of the loop,
rather than under control of the conditional code. In addition, all control flow is
removed from the body of the vector loop, because s1* s2 no longer poses a safety
risk.

voi d

saf e_cond(double a[restrict 1000], double s1, double s2)

{

int i;

#pragma _CRI safe_conditional
for (i = 0; i< 1000; i++) {
if(a[i] '=0.0) {
a[i] = a[i] + sl*s2;
}
}

S-2179-71 83

Cray C and C++ Reference Manual

3.7.12 short| oop and short| oopl28 Directives

Scope: Local

Theshort | oop compiler directive identifies loops that execute with a maximum
iteration count of 64 and a minimum iteration count of 1. Theshort| oop128
compiler directive identifies loops that execute with a maximum iteration count of
128 and a minimum iteration count of 1. If the iteration count is outside the range for
the directive, results are unpredictable. The compiler will diagnose misuse at compile
time (when able) or at run timeif option - h di r _check is specified.

The syntax of these directives are as follows:

#pragnma _CRI shortl oop
#pragnma _CRl shortl oopl28

Theshort| oop and short | oopl28 directives are exactly equivalent to
#pragna CRI loop_info nmin_trips(1l) max_trips(64) and
#pragnma CRI loop_info mn_trips(1l) max_trips(128),
respectively. Thel oop_i nf o pragmais the preferred form.

The following examplesillustrate the use of theshor t | oop and short | oop128
directives:

#pragma _CRI shortl oop

for (i =0; i <n; i++) { /* 0<=n<=63*
afi] = b[i] + c[i];

}

#pragma _CRl shortl oopl28

for (i =0; i <n; i++) { /* 0 <=n< =127 */
ali] = b[i] + c[i];

}

3.8 Scalar Directives

This section describes the scalar optimization directives, which control aspects of
code generation, register storage, and other scalar operations.

3.8.1 col | apse and nocol | apse Directives

84

Scope: Local
The loop collapse directives control collapse of the immediately following loop nest.

The formats of these directives are as follows:

#pragma _CRI col | apse loop-numberl, loop-number2[, loop-number3] . . .
#pragnma _CRl nocol | apse

S-2179-71

Using #pr agnma Directives [3]

When the col | apse directiveis applied to aloop nest, the loop numbers of the
participating loops must be listed in order of increasing access stride. Loop numbers
range from 1 to the nesting level of the most deeply nested loop. The directive
enables the compiler to assume appropriate conformity between trip counts. The
compiler diagnoses misuse at compile time (when able); or, if - h di r_check

is specified, at run time.

Thenocol | apse directive disqualifies the immediately following loop from
collapsing with any other loop. Collapse is ailmost aways desirable, so use this
directive sparingly.

Loop collapse is a special form of loop coalesce. Any perfect loop nest may be
coalesced into a single loop, with explicit rediscovery of the intermediate values of
original loop control variables. The rediscovery cost, which generally involves integer
division, is quite high. Therefore, coalesceisrarely suitable for vectorization. It may
be beneficial for multithreading.

By definition, loop collapse occurs when loop coalesce may be done without the
rediscovery overhead. To meet this requirement, all memory accesses must have
uniform stride.

3.8.2 concurrent Directive

S-2179-71

Scope: Loca

Theconcurr ent directive indicates that no data dependence exists between array
references in different iterations of the loop that follows the directive. This can be
useful for vectorization optimizations.

The format of the concur r ent directiveis as follows:

#pragma _CRl concurrent [safe_di stance=n]

n An integer that represents the number of additional consecutive loop
iterations that can be executed in parallel without danger of data
conflict. n must be an integral constant > 0.

Theconcurrent directiveisignored if thesaf e_di st ance clauseis used and
vectorization is requested on the command line.

In the following example, the concur r ent directive indicates that the relationship
k>3 istrue. The compiler will safely load all the array references x[i - K] ,
X[i-k+1],x[i-k+2],and X[i -k+3] during loop iterationi .

#pragma _CRI concurrent safe_di stance=3

for (i
x[i]
}

k +1; i <n;i++) {
a[i] + x[i-K];

85

Cray C and C++ Reference Manual

3.8.3 i nt er change and noi nt er change Directives

Scope: Local

The loop interchange control directives specify whether or not the order of the
following two or more loops should be interchanged. These directives apply to the
loops that they immediately precede.

The formats of these directives are as follows:

#pragma _CRI interchange(loop_numberl, loop_number2[, loop number3d] ...)
#pragma _CRl noi nt er change

The first format specifies two or more loop numbers. Loop numbers range from 1 to
nesting depth of the most deeply nested loop. They can be specified in any order, and
the compiler reorders the loops. The loops must be perfectly nested. If the loops are
not perfectly nested, you may receive unexpected results. The compiler reorders the
loops such that the loop with loop-number 1 is outermost, then loop-number2, then
loop-number 3.

The second format inhibits loop interchange on the loop that immediately follows
the directive.

In the following example, thei nt er change directive reorders the loops; the k loop
becomes the outermost and thei |oop the innermost:

#define N 100
AIN[N[N;
voi d
f(int n)
{

int i, j, k;

#pragma _CRl interchange(2, 3, 1)

for (i=0; i <n; i++) {
for (k=0; k < n; k++) {
for (j =0; j <n; j++) {
}A[k][J'][i] = 1.0

3.8.4 nor educti on Directive

86

Note: This directive is no longer recognized. Use the #pr agma _CRI
novect or directive instead.

S-2179-71

Using #pr agnma Directives [3]

3.8.5 suppr ess Directive

Thesuppr ess directive suppresses optimization in two ways, determined by its use
with either global or local scope.

The global scope suppr ess directive specifies that all associated local variables are
to be written to memory before a call to the specified function. This ensures that the
value of the variables will always be current.

The global suppr ess directive takes the following form:

#pragma _CRl suppress func. ..

The local scope suppr ess directive stores current values of the specified variables
in memory. If the directive lists no variables, al variables are stored to memory.
This directive causes the values of these variables to be reloaded from memory at the
first reference following the directive.

Thelocal suppr ess directive has the following format:

#pragnma _CRl suppress [var] ...

The net effect of the local suppr ess directiveis similar to declaring the affected
variables to be volatile except that the vol at i | e qualifier affects the entire
program, whereas the local suppr ess directive affects only the block of code

in which it resides.

3.8.6 [no] unrol | Directive

S-2179-71

Scope: Local

Theunr ol | directive allows the user to control unrolling for individual loops or to
specify no unrolling of aloop. Loop unrolling can improve program performance by
revealing cross-iteration memory optimization opportunities such as read-after-write
and read-after-read. The effects of loop unrolling aso include:

* Improved loop scheduling by increasing basic block size
* Reduced loop overhead
» Improved chances for cache hits

The formats for these compiler directives are:

#pragma _CRl unroll n
#pragnma _CRI nounrol |

Thenounr ol | directive disables loop unrolling for the next loop and does not
accept the integer argument n. Thenounr ol | directiveis equivalent to theunr ol |
O andunrol | 1 directives.

The n argument applies only to theunr ol | directive and specifies no loop unrolling
(n=0or 1) or the total number of loop body copies to be generated (2 < n < 63).

87

Cray C and C++ Reference Manual

88

If you do not specify avalue for n, the compiler will determine the number of copies
to generate based on the number of statements in the loop nest.

Note: The compiler cannot always safely unroll non-innermost loops due to data
dependencies. In these cases, the directive isignored (see Example 10).

Theunr ol | directive can be used only on loops with iteration counts that can be
calculated before entering the loop. If unr ol | is specified on aloop that is not the
innermost loop in aloop nest, the inner loops must be nested perfectly. That is, all
loops in the nest can contain only one loop, and the innermost |oop can contain work.

Example 9. Unrolling outer loops

In the following example, assume that the outer loop of the following nest will be
unrolled by 2:

#pragma _CRl unroll 2

for (i =0; i <10; i++) {
for (j =0; j < 100; j++) {
} ali][j] =blil[i] + 1

}

With outer loop unrolling, the compiler produces the following nest, in which the
two bodies of the inner loop are adjacent:

for (i =0; i <10; i +=2) {
for (j =0; j < 100; j++) {

} a[i][j] =bl[i][j] + 1;
for (j =0; j < 100; j++) {
a[i+1][j] = b[i+1][j] + 1;

}

The compiler then jams, or fuses, the inner two loop bodies, producing the following
nest:

for (i =0; i <10; i +=2) {
for (j =0; j < 100; j++) {
ali][j] =bli][j] + 1;
ali+1][j] = b[i+1][j] + 1;
}

S-2179-71

Using #pr agnma Directives [3]

Example 10. lllegal unrolling of outer loops

Outer loop unrolling is not always legal because the transformation can change the
semantics of the original program. For example, unrolling the following loop nest
on the outer loop would change the program semantics because of the dependency
betweenali][...] anda[i+1][...]:
/* directive will cause incorrect code due to dependencies! */
#pragma _CRl unroll 2
for (i =0; i <10; i++) {

for (j =1; j < 100; j++) {

ali][j] = ali+1][j-1] + L;

3.8.7 [no] f usi on Directive

Scope: Loca

The nof usi on directive instructs the compiler to not attempt loop fusion on the
following loop even when the- h f usi on option was specified on the compiler
command line. Thef usi on directive instructs the compiler to attempt loop
fusion on the following loop unless- h nof usi on was specified on the compiler
command line.

The formats for these compiler directives are:

#pragma _CRI fusion
#pragma _CRl nof usi on

3.9 Inlining Directives

S-2179-71

Inlining replaces calls to user-defined functions with the code that represents the
function. This can improve performance by saving the expense of the function call
overhead. It also increases the possibility of additional code optimization. Inlining
may increase object code size.

Inlining isinvoked in the following ways:

e Automatic inlining is enabled by the - h i pan option alone, as described in
Inlining Optimization Options on page 40.

e Explicitinlining isenabled by the- h i paf r omesource| : source] option aone
asdescribedin- h i paf r om=source [source] ... onpage42.

e Combined inlining is enabled by using both the - h i panand - h
i paf r om=source] : source] options (see Combined Inlining on page 43).

Inlining directives can only appear in local scope; that is, inside a function definition.
Inlining directives always take precedence over the command line settings.

89

Cray C and C++ Reference Manual

The-h report =i optionwrites messages identifying where functions are inlined
or briefly explains why functions are not inlined.

3.9.1 cl one_enabl e, cl one_di sabl e, cl one_r eset Directives

Thecl one_enabl e and cl one_di sabl e directives control whether cloning is
attempted over arange of code.

If cl one_enabl e isin effect, cloning is attempted at call sites. If
cl one_di sabl e isin effect, cloning is not attempted at cal sites.

Thecl one_r eset directive resets cloning to the state specified on the compiler
command line.

These directives have the following formats:

#pragnma _CRlI cl one_enabl e
#pragnma _CRl cl one_di sabl e
#pragma _CRI cl one_reset

One of these directives remains in effect until the opposite directive is encountered,
until the end of the program unit, or until the cl one_r eset directiveis
encountered. These directives areignored if the- h i pa0 optionisin effect.

3.9.2 inline_enable,inline _disable,andinline_reset Directives

90

Thei nl i ne_enabl e pragma directs the compiler to attempt to inline functions at
call sites. It has the following format:

#pragma _CRl inline_enable

Thei nl i ne_di sabl e directive tells the compiler to not inline functions at call
sites. It has the following format:

#pragma _CRI inline_disable

Thei nl i ne_r eset directivereturnsthe inlining state to the state specified on the
command line (- h i pan). It has the following format:

#pragma _CRl inline_reset

Thei nl i ne_al ways directive specifies functions that the compiler should always
attempt to inline. If the directive is placed in the definition of the function, inlining
is attempted at every call site to name in the entire input file being compiled. If the
directive is placed in a function other than the definition, inlining is attempted at
every call site to name within the specific function containing the directive.

Thei nl i ne_never directive specifies functions that are never to beinlined. If the
directive is placed in the definition of the function, inlining is never attempted at any
call siteto name in the entire input file being compiled. If the directiveis placed in a
function other than the definition, inlining is never attempted at any call site to name
within the specific function containing the directive.

S-2179-71

Using #pr agnma Directives [3]

Thei nl i ne_al ways andi nl i ne_never directives have the following formats:

#pragnma _CRI inline_always name [, name]
#pragma _CRl inline_never name [, name]

The following example illustrates the use of these directives.

Example 11. Using thei nli ne_enabl e,i nli ne_di sabl e,andinline_reset
directives

To compile the file displayed in this example, enter the following commands:

% cc -hipad b.c
% cat b.cvoid qux(int x)

{

voi d bar(void);
int a=1;

X = atatatatatatatatatatata;
bar () ;

voi d foo(void)

{
int j = 1;

#pragma i nline_enabl e /* enable inlining at all call sites here forward */
qux(j);
qux(j);

#pragma i nline_disable /* disable inlining at all call sites here forward */

qux(j);
#pragma inline_reset /* reset control to the command line -hipad4 */

qux(j);
}

Example 12. Using i nl i ne_r eset

The following code fragment shows how the#pragma _CRI i nl i ne_reset
directive would affect code compiled with the- h i pa3 option:

{
void f1()
#pragma _CRl inline_disable /* No inlining will be done in f1

}

voi d f2()
{

#pragma _CRI inline_disable /* turn off all inlining to the end of
the routine or another directive is encountered.

#pragnma _CRI inline_reset /* The inlining state is -h ipa3
for the remmi nder of f2;

}

S-2179-71 91

Cray C and C++ Reference Manual

3.9.3 inline_always andi nline_never Directives

92

Thei nl i ne_al ways directive specifies functions that the compiler should always
attempt to inline. If the directive is placed in the definition of the function, inlining
is attempted at every call site to name in the entire input file being compiled. If the
directive is placed in a function other than the definition, inlining is attempted at
every call site to name within the specific function containing the directive.

Theformat of thei nl i ne_al ways directiveis as follows:
#pragma _CRI inline_always name[, name]

Thei nl i ne_never directive specifies functions that are never to beinlined. If the
directive is placed in the definition of the function, inlining is never attempted at any
call siteto name in the entire input file being compiled. If the directiveis placed in a
function other than the definition, inlining is never attempted at any call site to name
within the specific function containing the directive.

Theformat of thei nl i ne_never directiveisasfollows:

#pragma _CRl inline_never name[, hame]

The name argument is the name of a function.

S-2179-71

Using OpenMP [4]

This chapter describes the Cray implementation of the OpenMP 3.0 standard
(OpenMP Application Program Interface Version 3.0 May 2008 Copyright ©
1997-2008 OpenMP Architecture Review Board).

4.1 Deferred OpenMP Features

The following OpenMP Fortran features are not yet supported by the Cray C and
Cray C++ compilers:

S-2179-71

In C++, an object of a class with a nontrivial default constructor, a nontrivial
copy constructor, a nontrivial destructor, or anontrivial copy assignment operator
can be used in a scoping clause. Currently, these objects can be used only in a
shared scope.

In C++, an object of a class with a nontrivial constructor, a nontrivial copy
constructor, a nontrivial destructor, or a nontrivial copy assignment operator
cannot be used in a scoping clause for any scope except shared. This limitation
will be removed in afuture release.

In C++, random-access iterator loops marked for work sharing may not be work
shared. You can help the compiler by using variables (such asbegi n andend in
example 2 below) as snapshots that capture the initial values of the begin and end
vectors (vec. begi n() andvec. end()).

Iterator example 1 is not work shared:

void iterator_exanmplel() {
#pragnma onp parallel for default(none) shared(vec)
for (it = vec.begin(); it < vec.end(); it++) {
printf("vector elenent is %\n", *it);
}
}

Iterator example 2 is work shared:

voi d iterator_exanmple2() {
begin = vec. begi n();
end = vec.end();
#pragma onp parallel for defaul t(none) shared(vec, begin, end)
for (it = begin; it <end; it+=1) {
printf("vector elenent is %\n", *it);

}

93

Cray C and C++ Reference Manual

This limitation will be removed in afuture release.

e Orphaned task constructs may have an implicit t askwai t directive added to
the end of the routine. Thisis not required by the specification but is currently
required by the Cray implementation. This limits the amount of parallelism that
may be seen. This limitation will be removed in afuture release.

e Task switching is not implemented. The thread that starts executing a task will
be the thread that finishes the thread. Task switching will be implemented in a
future release.

* Thecol | apse clauseisaccepted but is not implemented in the compiler. This
limitation will be removed in a future release.

4.2 Cray Implementation Differences

The OpenMP C and C++ Application Program Interface specification defines areas of
implementation that have vendor-specific behaviors. The following sections describe
Cray-specific implementations.

4.2.1 Pragmas

4.2.1.1 at om ¢ Construct

The at om c directiveisreplaced withacri ti cal section that encloses the
Statement.

4.2.1.2 for Construct

For the schedul e(gui ded, chunk) clause, the size of the initial chunk for the
master thread and other team members is approximately equal to the trip count
divided by the number of threads.

For theschedul e(runti ne) clause, the schedule type and chunk size can be
chosen at run time by setting the OVP_SCHEDULE environment variable. If this
environment variable is not set, the schedule type and chunk size default tost ati ¢
and 0, respectively.

In the absence of the schedul e clause, the default schedul e isst ati ¢ and the
default chunk size is approximately the number of iterations divided by the number of
threads.

4.2.1.3 paral | el Construct

If aparallé region is encountered while dynamic adjustment of the number of threads
is disabled, and the number of threads specified for the parallel region exceeds the
number that the runtime system can supply, the program terminates.

94 S-2179-71

Using OpenMP [4]

The number of physical processors actually hosting the threads at any given timeis
fixed at program startup and is specified by theapr un - d depth option.

The OMP_NESTED environment variable and the onp_set _nest ed() call
control nested parallelism. To enable nesting, set OVP_NESTEDtot r ue or usethe
onp_set _nest ed() call. Nesting is disabled by default.

4.2.1.4 private Clause

If avariableis declared aspri vat e, the variable is referenced in the definition of
a statement function, and the statement function is used within the lexical extent of
the directive construct, then the statement function references the pri vat e version
of the variable.

4.2.1.5 t hr eadpri vat e Construct

Thet hr eadpri vat e directive specifies that variables are replicated, with each
thread having its own copy. If the dynamic threads mechanism is enabled, the
definition and association status of athread's copy of the variable is undefined, and
the allocation status of an alocatable array is undefined.

4.2.2 OpenMP Library Routines

4.2.2.1 onp_get _max_active_l evel s()

The Cray implementation of OpenMP supports the proposed OpenMP 3.0
onp_get _nax_active_l evel s() routine to return the maximum number of
nested parallel levels currently allowed.

4.2.2.2 onp_set _dynami c()

Theonp_set _dynarmi c() routine enables or disables dynamic adjustment of the
number of threads available for the execution of subsequent parallel regions by setting
the value of the dyn-var ICV. The default is on.

4.2.2.3 onp_set _schedul e()

Theonp_set _schedul e() routine affects the schedule that is applied when
runti me isused as schedule kind, by setting the value of the run-sched-var ICV.
The default ison.

4.2.2.4 onp_set _max_active_l evel s()

The Cray implementation of OpenMP supports the proposed OpenMP 3.0
onp_set _nax_active_| evel s() routine to limit the depth of nested
paralelism. The number specified controls the maximum number of nested parallel
levels with more than one thread. The default valueis 1 (nesting disabled).

S-2179-71 95

Cray C and C++ Reference Manual

4.2.2.5 onp_set _nested()
Theonp_set _nest ed() routine enables or disables nested parallelism, by setting
the nest-var ICV. The default isf al se.

4.2.2.6 onp_set _num t hr eads()

If dynamic adjustment of the number of threads is disabled, the
nunber _of _t hr eads_expr argument sets the number of threads for al
subsequent parallel regions until this procedure is called again with a different value.

4.2.3 OpenMP Environment Variables

4.2.3.1 OW_DYNAM C

The default valueist r ue.

4.2.3.2 OVW_NMAX ACTI VE_LEVELS
The default valueis 1.

4.2.3.3 OVWP_NESTED

The default valueisf al se.

4.2.3.4 OVP_NUM_THREADS

If this environment variable is not set and you do not use the
onp_set _num_t hreads() routine to set the number of OpenMP
threads, the default is 1 thread.

The maximum number of threads per compute node is 4 times the number of
alocated processors. If the requested value of OVP_NUM_THREADS is more

than the number of threads an implementation can support, the behavior of the
program depends on the value of the OMP_DYNAM C environment variable. If
OVP_DYNAM Cisf al se, the program terminates. If OVP_DYNAM Cist r ue, it
uses up to 4 times the number of allocated processors. For example, on a quad-core
Cray XT system, this means the program can use up to 16 threads per compute node.

4.2.3.5 OVP_SCHEDULE

The default values for this environment variable are st at i ¢ for type and O for
chunk.

4.2.3.6 OVWP_STACKSI ZE

The default value for this environment variable is 128 MB.

96 S-2179-71

Using OpenMP [4]

4.2.3.7 OWP_THREAD LIM T

Sets the number of OpenMP threads to use for the entire OpenM P program by setting
the thread-limit-var ICV. The Cray implementation defaults to 4 times the number
of available processors.

4.2.3.8 OWP_\WAI T_POLI CY

Provides a hint to an OpenM P implementation about the desired behavior of waiting
threads by setting the wait-policy-var ICV. A compliant OpenM P implementation
may or may not abide by the setting of the environment variable. The default value
for this environment variableisact i ve.

4.3 Compiler Options Affecting OpenMP

These Cray C and C++ Compiler options affect OpenMP applications:

e -h [no]onp (-h [no] onp on page 58)
e -h threadn(-h threadn on page 36)

4.4 OpenMP Program Execution

S-2179-71

Theapr un - d option can be used to define the number of processors available to
the application. If neither the OVP_NUM_THREADS environment variable nor the
onp_set _num t hreads() call isused to set the number of OpenMP threads, the
system defaults to 1 thread. The maximum number of threads per compute node is 4
times the number of allocated processors.

For further information, including example OpenMP programs, see the Cray XT
Programming Environment User's Guide.

97

Cray C and C++ Reference Manual

98 S-2179-71

Using Cray Unified Parallel C (UPC) [5]

S-2179-71

Unified Parallel C (UPC) is a C language extension for parallel program
development.

Cray supports the UPC Language Specification 1.2 and also supports some Cray
specific functions as noted in the following sections. For additional information about
afunction, refer to the appropriate UPC man page. For a description of the- h upc
command line option, see Compiling and Executing UPC Code on page 100.

You should be familiar with UPC and understand the differences between the
published UPC Introduction and Language Specification paper and the current UPC
specification. If you are not familiar with UPC, refer to the UPC home page at
http://upc. gwu. edu/ . Under the Publications link, select the Introduction to
UPC and Language Specification paper. This paper is slightly outdated but contains
valuable information about understanding and using UPC. The UPC home page aso
contains, under the Documentation link, the UPC Language Specification 1.2 paper.

UPC alows you to explicitly specify parallel programming through language syntax
rather than library functions such as those used in MPl and SHMEM by allowing you
to read and write memory of other processes with simple assignment statements.
Program synchronization occurs only when explicitly programmed; thereis no
implied synchronization. These methods map very well onto Cray XT systems and
enable users to achieve high performance.

Note: UPC isadialect of the C language. It is not available in C++.

UPC alows you to maintain aview of your program as a collection of threads
operating in a common global address space without burdening you with details of
how parallelism isimplemented on the machine (for example, as shared memory or as
acollection of physically distributed memories).

UPC data objects are private to a single thread or shared among all threads of
execution. Each thread has a unique memory space that holds its private data objects,
and access to a globally-shared memory space that is distributed across the threads.
Thus, every part of a shared data object has an affinity to a single thread.

Cray UPC is compatible with MPI and SHMEM.

99

http://upc.gwu.edu/

Cray C and C++ Reference Manual

Note: UPC 1.2 supports a parallel 1/0 model which provides control over file
synchronization. However, if you continue to use the regular C 1/0 routines, you
must supply the controls as needed to remove race conditions. File I/O under UPC
is very similar to standard C because one thread opens a file and shares the file
handle, and multiple threads may read or write to the samefile.

Note: Some UPC constructs perform more efficiently than others. For more
information about UPC functions, see the man pages (read i nt r o_upc(3) first).

5.1 Cray Implementation Differences
There is afalse sharing hazard when referencing shared char and shor t integers.

If two PEs storeachar or short to the same 64-bit word in memory without
synchronization, incorrect results can occur. It is possible for one PE's store to be
lost. Thisis because these stores are implemented by reading the entire 64-bit word,
inserting thechar or short value and writing the entire word back to memory.

The following output is a result of two PEs writing two different characters into the
same word in memory without synchronization:

Regi st er Menor y
Initial Value 0x0000
PE 0 Reads 0x0000 0x0000
PE 1 Reads 0x0000 0x0000
PE O Inserts 3 0x3000 0x0000
PE 1 Inserts 7 0x0700 0x0000
PE 0O Wites 0x3000 0x3000
PE 1 Wites 0x0700 0x0700

Notice that the value stored by PE 0 has been lost. The final value intended was
0x3700. Thissituation isreferred to as false sharing. It isthe result of supporting
data types that are smaller than the smallest type that can be individually read or
written by the hardware. UPC programmers must take care when storing to shared
char and short datathat this situation does not occur.

5.2 Compiling and Executing UPC Code

To compile UPC code, you must load the programming environment module and
specify the- h upc option on the cc command line.

The - X npes option can optionally be used to define the number of threads to use
and statically set the value of the THREADS constant. See - X npes on page 59 for
requirements regarding the use of the - X npes option.

100 S-2179-71

Using Cray Unified Parallel C (UPC) [5]

S-2179-71

Dynamic shared memory allocated through language features is not done through
shmal | oc() ; it is done by the run time system. The run time system checks the
XT_SYMVETRI C_HEAP_SI ZE environment variable. If the variable is not set, the
default (32 MB) isused. The default may change in a future release, so it is good
practice to define XT_SYMMETRI C_HEAP_SI ZE if your program uses a significant
amount of dynamically allocated shared data.

If your program requires atotal amount of shared memory (static plus dynamic) that
is near or more than 2 GB per PE, then you may encounter a GASNet limit. The
Cray XT UPC runtime uses GASNet, which has a default shared segment size of 2
GB. This default may be inappropriate on nodes with 4 GB per PE, for example. The
workaround isto set GASNET_MAX_SEGSI ZE=4GB.

Example 13. UPC and THREADS defined dynamically

The following example enables UPC and allows the THREADS symbol to be defined
dynamically for the exanpl application:

% cc -h upc -o multupc exanpl.c

Example 14. UPC and THREADS defined statically

The following example enables UPC and statically defines the THREADS symbol as
15 for the exanpl application:

% cc -h upc -X15 -0 nmultupc exanpl.c
The processing elements specified by npes are compute node cores.
After compiling the UPC code, you run the program using the apr un command.

If you use the —X npes compiler option, you must specify the same number of
threads in the apr un command.

101

Cray C and C++ Reference Manual

102 S-2179-71

Using Cray C++ Libraries [6]

The Cray C++ compiler supports the C++ 98 standard (1SO/IEC FDIS 14882) and
continues to support existing Cray extensions. Most of the standard C++ features
are supported, except for the few mentioned in Unsupported Standard C++ Library
Features.

For information about C++ language conformance and exceptions, see Appendix B,
Using Cray C and C++ Diaects on page 151.

6.1 Unsupported Standard C++ Library Features

The Cray C++ compiler supports the C++ standard except for wide characters and
multiple locales as follows:

e String classes using basic string class templates with wide character types or that
usethewst ri ng standard template class

» 1/O streams using wide character objects

» File-based streams using file streams with wide character types (Wf i | ebuf ,
wi f st ream wof st ream and W st r eam

e Multiplelocalization libraries; Cray C++ supports only one locale

Note: The C++ standard provides a standard naming convention for library
routines. Therefore, classes or routines that use wide characters are named
appropriately. For example, thef scanf and spri nt f functions do not use wide
characters, but the f wscanf and swpri nt f function do.

S-2179-71 103

Cray C and C++ Reference Manual

104 S-2179-71

Using Cray C++ Template Instantiation [7]

A template describes a class or function that is amodel for afamily of related classes
or functions. The act of generating a class or function from atemplate is called
template instantiation.

For example, atemplate can be created for a stack class, and then a stack of integers,
a stack of floats, and a stack of some user-defined type can be used. In source
code, these might be written as St ack<i nt >, St ack<f | oat >, and St ack<X>.
From a single source description of the template for a stack, the compiler can create
instantiations of the template for each of the types required.

The instantiation of a class template is always done as soon as it is needed during a
compilation. However, the instantiations of template functions, member functions of
template classes, and static data members of template classes (template entities) are
not necessarily done immediately for the following reasons:

» The preferred end result is one copy of each instantiated entity across all object
filesin aprogram. This applies to entities with external linkage.

* A gpecidlization of atemplate entity is allowed. For example, a specific version
of St ack<i nt >, or of just St ack<i nt >: : push could be written to replace
the template-generated version and to provide a more efficient representation for
aparticular data type.

« |f atemplate function is not referenced, it should not be compiled because
such functions could contain semantic errors that would prevent compilation.
Therefore, a reference to atemplate class should not automatically instantiate
all the member functions of that class.

The goal of an instantiation mode is to provide trouble-free instantiation. The
programmer should be able to compile source files to object code, link them and run
the resulting program, without questioning how the necessary instantiations are done.

In practice, thisis difficult for a compiler to do, and different compilers use different
instantiation schemes with different strengths and weaknesses.

S-2179-71 105

Cray C and C++ Reference Manual

The Cray C++ compiler requires anormal, top-level, explicitly compiled source file
that contains the definition of both the template entity and of any types required for
the particular instantiation. This requirement is met in one of the following ways:

e Each. h filethat declares a template entity also contains either the definition of
the entity or includes another file containing the definition.

e When the compiler identifies atemplate declaration in a. h file and discovers a
need to instantiate that entity, implicit inclusion gives the compiler permission to
search for an associated definition file having the same base name and a different
suffix and implicitly include that file at the end of the compilation (see Implicit
Inclusion on page 112).

e The programmer makes sure that the files that define template entities also have
the definitions of al the available types and adds code or directivesin those files
to request instantiation of those entities.

The Cray C++ compiler provides two instantiation mechanisms—simple instantiation
and prelinker instantiation. These mechanisms perform template instantiation and
provide command line options and #pr agna directives that give the programmer
more explicit control over instantiation.

7.1 Simple Instantiation

106

The goal of the simple instantiation mode is to provide a method of instantiating
templates without the need to create and manage intermediate (*. ti and*.ii)
files.

The Cray C++ compilers accomplishes simple instantiation as follows:

1. When the source files of a program are compiled using the - h
si mpl e_t enpl at es option, each of the *. o files contains a copy of all of the
template instantiations it uses.

2. When the object files are linked together, the resulting executable file contains
multiple copies of the template function.

Unlikein prelinker instantiation, no*. ti or*.ii filesare created. The programmer
is not required to manage the naming and location of the intermediate files.

The simple template instantiation process creates dightly larger object filesand a
dlightly larger executable file than is the case for prelinker instantiation.

For example, you have three C++ sourcefiles, x. C,y. C,and z. C. The source files
reference atemplatesort al | that sortsi nt, f| oat , and char array elements:

tenplate <class X> void sortall (X a[])

{
}

. code to sort int, float, char elenments ...

S-2179-71

Using Cray C++ Template Instantiation [7]

Entering the command CC -c¢ -h sinple_tenplates x.Cy.C z.C
produces object filesx. 0, y. 0, and z. 0. Each *. o file has three copies of
sortal |l ,onefori nts, onefor fl oat s, and onefor char s.

Then, entering the command CC x. 0 y. o z. o linksthe files and any needed
library routines, creating a. out .

Because the - h si npl e_t enpl at es option enables the - h

i nstanti at e=used option, all needed template entities are instantiated. The

programmer can usethe #pr agnma do_not _i nst ant i at e directivein programs
compiled using the- h si npl e_t enpl at es option. For more information, see

Instantiation Directives on page 76.

7.2 Prelinker Instantiation

S-2179-71

In prelinker mode, automatic instantiation is accomplished by the Cray C++ compiler

as follows:

1. If the compiler isresponsible for doing al instantiations automatically, it can only
do so for the entire program. That is, the compiler cannot make decisions about

instantiation of template entities until all source files of the complete program
have been read.

. Thefirst time the source files of a program are compiled, no template entities

are instantiated. However, the generated object files contain information about
things that could have been instantiated in each compilation. For any source file
that makes use of atemplate instantiation, an associated . ti fileis created, if
one does not already exist (for example, the compilation of abc. Cresultsin the
creation of abc. ti).

107

Cray C and C++ Reference Manual

108

3. When the object files are linked together, a program called the prelinker is
run. It examines the object files, looking for references and definitions of
template entities and for any additional information about entities that could be
instantiated.

Caution: The prelinker examines the object filesin alibrary (. a) file but,
because it does not modify them, is not able to assign template instantiations
to them.

4. If the prelinker finds a reference to a template entity for which there is no
definition in the set of object files, it looks for afile that indicates that it could
instantiate that template entity. Upon discovery of such afile, it assigns the
instantiation to that file. The set of instantiations assigned to a given file (for
example, abc. C) isrecorded in an associated file that hasa. i i suffix (for
example, abc. i i).

5. The prelinker then executes the compiler to again recompile each file for which
the. i i was changed.

6. During compilation, the compiler obeys the instantiation regquests contained in
associated . i i file and produces a new abject file that contains the requested
template entities and the other things that were already in the object file.

7. The prelinker repeats steps 3 through 5 until there are no more instantiations to
be adjusted.

8. The object files are linked together.

Once the program has been linked correctly, the . i i files contain a complete set of
instantiation assignments. If source files are recompiled, the compiler consults the

. i1 filesand does the indicated instantiations as it does the normal compilations.
That means that, except in cases where the set of required instantiations changes, the
prelink step from then on will find that al the necessary instantiations are present in
the object files and no instantiation assignment adjustments need be done. Thisistrue
even if the entire program is recompiled. Becausethe. i i file containsinformation
about how to recompile when instantiating, it is important that the. o and . i i files
are not moved between the first compilation and linkage.

The prelinker cannot instantiate into and from library files (. a), soif alibrary isto
be shared by many applications its templates should be expanded. You may find
that creating a directory of objects with corresponding . i i files and the use of

-h prelink_copy_if_nonl ocal (see-hprelink_copy_if_nonl ocal
(CC) on page 29) will work asif you created alibrary (. a) that is shared.

The-h prelink_|ocal _copy optionindicates that only local files (for
example, filesin the current directory) are candidates for assignment of instantiations.
This option is useful when you are sharing some common relocatables but do not
want them updated. Another way to ensure that shared . o files are not updated is to
usethe-h renove_i nstanti ati on_f| ags option when compiling the shared
. 0 files. This also makes smaller resulting shared . o files.

S-2179-71

Using Cray C++ Template Instantiation [7]

S-2179-71

An easy way to create alibrary that instantiates all references of templates within the
library isto create an empty mai n function and link it with the library, as shown in
the following example. The prelinker will instantiate those template references that
are within the library to one of the relocatables without generating duplicates. The
empty dunmry_mai n. o fileisremoved prior to creating the . a file.

% CC a.C b.C c.C dunmmy_main. C
%ar cr nmylib.a a.o b.o c.o

Another alternative to creating alibrary that instantiates all references of templatesis
tousethe-h one_i nstanti ati on_per_obj ect option. This option directs
the prelinker to instantiate each template referenced within alibrary in its own object
file. The following example shows how to use the option:

% CC -h one_instantiation_per_object a.C b.C c.C dumy_main.C
%ar cr mylib.a a.o b.o c.o mylnstantiationsDir/*.int.o

For more information about this alternative see One Instantiation Per Object File on
page110and - h one_instanti ati on_per _obj ect (CC) on page 27.

Prelinker instantiation can coexist with partial explicit control of instantiation
by the programmer through the use of #pr agma directives or the
-h instanti at e=mode option.

Prelinker instantiation mode can be disabled by issuing the

-h noaut oi nst anti at e command line option. If prelinker
instantiation is disabled, the information about template entities that could be
instantiated in afile is not included in the object file.

109

Cray C and C++ Reference Manual

7.3 Instantiation Modes

Normally, during compilation of a source file, no template entities are instantiated
(except those assigned to the file by prelinker instantiation). However, the overall
instantiation mode can be changed by issuing the - h i nst anti at e=mode
command line option. The mode argument can be specified as follows:

mode

none

used

al |

| ocal

Description

Do not automatically create instantiations of any template entities.
Thisis the most appropriate mode when prelinker instantiation is
enabled. Thisisthe default instantiation mode.

Instantiate those template entities that were used in the compilation.
Thisincludes all static data members that have template definitions.

Instantiate all template entities declared or referenced in the
compilation unit. For each fully instantiated template class, al

of its member functions and static data members are instantiated,
regardless of whether they were used. Nonmember template
functions are instantiated even if the only reference was a declaration.

Similar to used mode, except that the functions are given internal
linkage. This mode provides a simple mechanism for those who are
not familiar with templates. The compiler instantiates the functions
used in each compilation unit as local functions, and the program
links and runs correctly (barring problems due to multiple copies
of locdl static variables). This mode may generate multiple copies
of the instantiated functions and is not suitable for production use.
This mode cannot be used in conjunction with prelinker template
instantiation. Prelinker instantiation is disabled by this mode.

In the case where the CC command is given a single source file to compile and link,
al instantiations are done in the single source file and, by default, the used modeis
used and prelinker instantiation is suppressed.

7.4 One Instantiation Per Object File

You can direct the prelinker to instantiate each template referenced in the source into
its own object file. This method is preferred over other template instantiation object
file generation options because:

110

e Theuser of alibrary pullsin only the instantiations that are needed.

e Multiple libraries with the same template can link. If each instantiation is not
placed in its own object file, linking a library with another library that also
contains the same instantiations will generate warnings on some platforms.

S-2179-71

Using Cray C++ Template Instantiation [7]

Usethe-h one_instantiati on_per_obj ect option to generate one
object file per instantiation. For more information about this option, see - h
one_instantiati on_per_obj ect (CC) on page 27.

7.5 Instantiation #pr agma Directives

S-2179-71

Instantiation #pr agna directives can be used in source code to control the
instantiation of specific template entities or sets of template entities. There are three
instantiation #pr agna directives:

« The#pragma _CRI instanti at e directive causes a specified entity to be
instantiated.

e The#pragma _CRlI do_not _instanti at e directive suppresses the
instantiation of a specified entity. It istypically used to suppress the instantiation
of an entity for which a specific definition is supplied.

e The#pragma _CRI can_instanti at e directiveindicates that a specified
entity can be instantiated in the current compilation, but need not be. Itisusedin
conjunction with prelinker instantiation to indicate potential sites for instantiation
if the template entity is deemed to be required by the compiler.

The argument to the#pragma _CRI i nstanti at e directive can be any of the
following:

e A template class name. For example: A<i nt >

« A template class declaration. For example: ¢l ass A<i nt >
¢ A member function name. For example: A<i nt >: : f

e A static data member name. For example: A<i nt >: @i

e A static datadeclaration. For example: i nt A<i nt >: ;i

e A member function declaration. For example: voi d A<i nt>::f (i nt,
char)

* A template function declaration. For example: char* f(int, float)

A #pr agma directive in which the argument is a template class name (for example,
A<i nt>orcl ass A<i nt >) isequivaent to repeating the directive for each
member function and static data member declared in the class. When instantiating an
entire class, a given member function or static data member may be excluded using
the#pragma _CRI do_not _i nstanti at e directive. For example:

#pragm _CRl instantiate A<int>
#pragnma _CRI do_not_instantiate A<int>::f

111

Cray C and C++ Reference Manual

The template definition of atemplate entity must be present in the compilation for
an instantiation to occur. If an instantiation is explicitly requested by use of the
#pragnma _CRlI instanti at e directive and no template definition is available
or a specific definition is provided, an error isissued.

The following example illustrates the use of the#pragna _CRI i nstanti ate
directive:

templ ate <class T> void f1(T); // No body provided
tenmpl ate <class T> void g1(T); // No body provided
void f1(int) {} [/ Specific definition

voi d mai n()

{. .

int i;

doubl e d;

f1(i);

f1(d);

gl(i);

gl(d);

}

#pragma _CRlI instantiate void fl1(int) // error-specific definition
#pragnma _CRl instantiate void gl(int) // error-no body provided

In the preceding example, f 1(doubl e) and g1(doubl e) are not instantiated
because no bodies are supplied, but no errors will be produced during the
compilation. If no bodies are supplied at link time, alinker error isissued.

A member function name (such as A<i nt >: : f) can be used asa#pr agna
directive argument only if it refers to a single, user-defined member function (that
is, not an overloaded function). Compiler-generated functions are not considered,
so a name can refer to a user-defined constructor even if a compiler-generated
copy constructor of the same name exists. Overloaded member functions can be
instantiated by providing the complete member function declaration, asin the
following example:

#pragm _CRl instantiate char* A<int>::f(int, char*)

The argument to an instantiation directive cannot be a compiler-generated function,
an inline function, or a pure virtual function.

7.6 Implicit Inclusion

112

The implicit inclusion feature implies that if the compiler needs a definition to
instantiate a template entity declared in a. h file, it can implicitly include the
corresponding . Cfile to get the source code for the definition. For example, if a
template entity ABC: : f isdeclaredinfilexyz. h, and an instantiation of ABC: : f is
required in a compilation, but no definition of ABC. : f appearsin the source code
processed by the compilation, the compiler will search for the xyz. Cfileand, if it
exists, processit asif it were included at the end of the main source file.

S-2179-71

Using Cray C++ Template Instantiation [7]

To find the template definition file for a given template entity, the Cray C++ compiler
must know the full path name to the file in which the template was declared and
whether the file was included using the system include syntax (such as#i ncl ude
<fil e. h>). Thisinformation is not available for preprocessed source code
containing #| i ne directives. Consequently, the Cray C++ compiler does not attempt
implicit inclusion for source code that contains#| i ne directives.

The definition-file suffixes that are tried by default are. ¢, . C, . cxx, . CXX, and
. CC.

Implicit inclusion works well with prelinker instantiation; however, they are
independent. They can be enabled or disabled independently, and implicit inclusion is
still useful without prelinker instantiation.

S-2179-71 113

Cray C and C++ Reference Manual

114 S-2179-71

Using Cray C Extensions [8]

The Cray C compiler supports the following Cray extensions to the C standard:
* Complex data extensions (Complex Data Extensions on page 115)
e fortran keyword (f ort r an Keyword on page 116)

» Hexadecimal floating-point constants (Hexadecimal Floating-point Constants
on page 116)

A program that uses one or more extensions does not strictly conform to the standard.
These extensions are not available in strict conformance mode.

8.1 Complex Data Extensions

S-2179-71

Cray C extends the complex data facilities defined by standard C with these
extensions:

e Imaginary constants
e Incrementing or decrementing _Conpl ex data

The Cray C compiler supports the Cray imaginary constant extension and is defined
inthe <conpl ex. h> header file. Thisimaginary constant has the following form:

Ri
Ris either afloating constant or an integer constant; no space or other character

can appear between Rand i . If you are compiling in strict conformance mode
(- h conf or n, the Cray imaginary constants are not available.

The following example illustrates imaginary constants:

#i ncl ude <conpl ex. h>
doubl e conpl ex z1
doubl e conpl ex z2

1.2 + 3.4i;
5i ;

The other extension to the complex data facility allows the prefix— and postfix-
increment and decrement operators to be applied to the _Conpl ex datatype. The
operations affect only the real portion of a complex humber.

115

Cray C and C++ Reference Manual

8.2 fortran Keyword

In extended mode, the identifier f or t r an istreated as a keyword. It specifies a
storage class that can be used to declare a Fortran-coded external function. The use of
thef or t r an keyword when declaring a function causes the compiler to verify that
the arguments used in each call to the function are pass by addresses; any arguments
that are not addresses are converted to addresses.

Asin any function declaration, an optional type-specifier declares the type returned,
if any. Typei nt isthe default; typevoi d can be used if no valueisreturned (by a
Fortran subroutine). Thef or t r an storage class causes conversion of lowercase
function names to uppercase, and, if the function name ends with an underscore
character, the trailing underscore character is stripped from the function name.
(Stripping the trailing underscore character is in keeping with UNIX practice.)

Functions specified with af or t r an storage class must not be declared elsewhere
inthefilewith ast at i ¢ storage class.

Note: Thef ortran keyword is not alowed in Cray C++.

An example using thef or t r an keyword is shown in Cray C and Fortran Example
on page 135.

8.3 Hexadecimal Floating-point Constants

The Cray C compiler supports the standard hexadecimal floating constant notations
and the Cray hexadecimal floating constant notation. The standard hexadecimal
floating constants are portable and have sizes that are dependent upon the hardware.
The remainder of this section discusses the Cray hexadecimal floating constant.

The Cray hexadecimal floating constant feature is not portable, because identical
hexadecimal floating constants can have different meanings on different systems. It
can be used whenever traditional floating-point constants are allowed.

The hexadecimal constant has the usual syntax: 0x (or 0X) followed by hexadecimal
characters. The optional floating suffix has the same form as for normal floating
constants: f or F (for float), | or L (for long), optionally followed by an i

(imaginary).

The constant must represent the same number of bits asits type, which is determined
by the suffix (or the default of double). The constant's bit length is four times the
number of hexadecimal digits, including leading zeros.

116 S-2179-71

Using Cray C Extensions [8]

S-2179-71

The following example illustrates hexadecimal constant representation:
OX7f7fffff.f

32-bit float
0x0123456789012345.

64-bit double

The value of a hexadecimal floating constant is interpreted as a value in the specified
floating type. This uses an unsigned integral type of the same size as the floating
type, regardless of whether an object can be explicitly declared with such atype. No
conversion or range checking is performed. The resulting floating value is defined in
the same way as the result of accessing a member of floating type in a union after a
value has been stored in a different member of integral type.

The following example illustrates hexadecimal floating-point constant representation
that use Cray floating-point format:

i nt mai n(voi d)

{
float f1, f2;
doubl e g1, g2;

f1 = 0x3ec00000. f;
f2 = 0x3f c00000. f;
gl = 0x40f a400100000000. ;
g2 = 0x40f a400200000000. ;
printf("fl1 = 98.8g\n", f1);
printf("f2 = 98.8g\n", f2);
printf("gl = %46.16g\n", gl);
printf("g2 = %6.16g\n", g2);
return 1,

}

Thisis the output for the previous example:

fl-= 0. 375

f2 = 1.5

gl = 107520. 0625

g2 = 107520. 125

117

Cray C and C++ Reference Manual

118 S-2179-71

Using Predefined Macros [9]

The macros listed in this chapter are the Cray-specific predefined macros. To see the
entire list of predefined macros, add - W, - 1i st _fi nal _macros - Etoyourcc
command line. For example, if you have thefilec. c, specify:

%cc -W, -list_final _macros -E c.c > out
Predefined macros can be divided into the following categories:

» Macros required by the C and C++ standards (Macros Required by the C and
C++ Standards on page 120)

* Macros based on the host machine (Macros Based on the Host Machine on
page 120)

» Macros based on the target machine (Macros Based on the Target Machine on
page 121)

» Macros based on the compiler (Macros Based on the Compiler on page 121)
e UPC macros (UPC Predefined Macros on page 122)

Predefined macros provide information about the compilation environment. In this
chapter, only those macros that begin with the underscore (_) character are defined
when running in strict-conformance mode.

Note: Any of the predefined macros except those required by the standard (see
Macros Required by the C and C++ Standards on page 120) can be undefined by
using the - U command line option; they can also be redefined by using the - D
command line option.

A large set of macrosis also defined in the standard header files.

S-2179-71 119

Cray C and C++ Reference Manual

9.1 Macros Required by the C and C++ Standards

The following macros are required by the C and C++ standards:

Macro Description

__TIME__ Time of trandation of the sourcefile.

__DATE Date of tranglation of the sourcefile.

__LINE__ Line number of the current linein
your source file.

__FILE Name of the source file being
compiled.

STDC Defined as the decimal constant 1 if

compilation isin strict conformance
mode; defined as the decimal constant
2 if the compilation is in extended
mode. Thismacro is defined for Cray
C and C++ compilations.

__cpl uspl us Defined as 1 when the compiling
Cray C++ code and undefined
when compiling Cray C code. The
__cpl uspl us macro isrequired by
the |SO C++ standard, but not the ISO
C standard.

9.2 Macros Based on the Host Machine

The following macros provide information about the environment running on the

host machine:
Macro Description
__l'inux Defined as 1.
__linux__ Defined as 1.
l'i nux Defined as 1.
__gnu_linux__ Defined as 1.

120 S-2179-71

Using Predefined Macros [9]

9.3 Macros Based on the Target Machine

The following macros provide information about the characteristics of the target

machine:

Macro Description

_ADDR64 Defined as 1 if the targeted CPU has
64-bit address registers; if the targeted
CPU does not have 64-bit address
registers, the macro is not defined.

__LITTLE ENDI AN Defined as 1. Cray XT systems use
little endian byte ordering.

_LITTLE_ENDI AN Defined as 1. Cray XT systems use
little endian byte ordering.

_MAXVL_8 Defined as 16, the number of 8-bit
elements that fit in an XMM register
("vector length").

_MAXVL_16 Defined as 8.

_MAXVL_32 Defined as 4.

_MAXVL 64 Defined as 2.

IMAXVL 128 Defined as 0.

9.4 Macros Based on the Compiler

The following macros provide information about compiler features:

Macro Description

_RELEASE Defined as the major release level of
the compiler.

_RELEASE M NOR Defined as the minor release leve of
the compiler.

_RELEASE STRI NG Defined as a string that describes the
version of the compiler.

_CRAYC Defined as 1 to identify the Cray C

and C++ compilers.

S-2179-71 121

Cray C and C++ Reference Manual

9.5 UPC Predefined Macros

The following macros provide information about UPC functions:

Macro Description

__UPC The integer constant 1, indicating a
conforming implementation.

__UPC DYNAM C THREADS The integer constant 1 in the dynamic
THREADS trandlation environment.

__UPC _STATI C_THREADS The integer constant 1 in the static

THREADS trand ation environment.

122 S-2179-71

Running C and C++ Applications [10]

To run applications, log in to a Cray XT login node and set up your user environment.
See the Cray XT Programming Environment User's Guide for details on setting up
your environment. In your working directory, load the appropriate modules, compile
your programs, and launch them using the apr un command.

Note: You need to be in a Lustre-mounted directory, such as
/1 us/ ni dO0007/ user 1/ nyxt apps, before using the apr un command.

To use the Cray C compiler, load the Pr gEnv- cr ay module. Use the modul e
|'i st command to get alist of currently loaded modules. If another Programming
Environment module is loaded, use the nodul e swap command. For example, if
Pr gEnv- pgi isloaded, use this command:

% nodul e swap PrgEnv-pgi PrgEnv-cray

Thenusethecc -V command to verify that the Cray C compiler is available:

%cc -V
[opt/cray/xt-asyncpe/2.5/bin/cc: INFG native target is being used
Cray C++ : Version 7.1.0.129 Thu May 21, 2009 14:37:25

Compile and run your application.

%cc -o sinple sinple.c

% aprun -n 4 ./sinple | sort

Application 1024906 resources: utime 0, stine O
hello frompe 0 of
hello frompe 1 of
hello frompe 2 of
hello frompe 3 of

A DA DADH

If you specified the - X option on the cc command line, then theapr un - n option
must specify the same number of processing elements (npes).

For additional information, see the Cray XT Programming Environment User's Guide.

S-2179-71 123

Cray C and C++ Reference Manual

124 S-2179-71

Debugging Cray C and C++ Code [11]

The Total View symbolic debugger is available to help you debug C and C++ codes
(see Total View Users Guide). In addition, the Cray C and C++ compilers provide the
following features to help you in debugging codes:

The - Gand - g compiler options provide symbol information about your source
code for use by the Tota View debugger. For more information about these
compiler options, see - Glevel and - g on page 47.

The - h [no] bounds option and the #pragma _CRI [no] bounds
directive let you check pointer and array references. The - h [no] bounds
option is described in - h [no] bounds (cc) on page 48. The
#pragma _CRI [no] bounds directiveis described in [no] bounds
Directive on page 68.

The#pragma _CRlI nessage directive lets you add warning messages to
sections of code where you suspect problems. The#pragnma _CRI nessage
directive is described in message Directive on page 70.

The#pragma _CRI [no] opt directive letsyou selectively isolate portions of
your code to optimize, or to toggle optimization on and off in selected portions of
your code. The#pragma _CRI [no] opt directiveisdescribedin[no] opt
Directive on page 72.

11.1 TotalView Debugger

Some of the functions available in the Total View debugger allow you to perform the
following actions:

S-2179-71

Set and clear breakpoints, which can be conditional, at both the source code level
and the assembly code level

Examine core files

Step through a program, including across function calls
Reattach to the executable file after editing and recompiling
Edit values of variables and memory locations

Evaluate code fragments

125

Cray C and C++ Reference Manual

11.2 Compiler Debugging Options

Compiler options control the trade-offs between ease of debugging and compiler
optimizations. The compiler produces internal debugger information (DWARF) at
all times. The DWARF data provides function and line information to debuggers
for tracebacks and breakpoints, as well as type and location information about data
variables.

These options are specified as follows:

-G

With no DWAREF, the executable is optimized and as small as possible, but cannot
be easily debugged. Only assembly instructions will be visible and only global
symbols will be available.

-G
With partial DWARF and at |east some optimization, tracebacks and limited
breakpoints are available in the debugger. The source code will be visible and

many more symbols will be available. The executable will be somewhat slower
and larger in exchange for increased debugger functionality.

-gor-Gn

With full DWARF and no optimizations, full debugging will be available, but at
the cost of a slower and larger executable.

Note: The- g/- Goptions may be specified on a per file basis so that only part
of an application incurs the overhead of improved debugging.

However, consider the following cases in which optimization is affected by the - Gp
and - f debugging options:

126

Vectorization can be inhibited if alabel exists within the vectorizable loop.

Vectorization can be inhibited if the loop contains a nested block and the - Gp
option is specified.

When the - Gp option is specified, setting a breakpoint at the first statement in a
vectorized loop allows you to stop and display at each vector iteration. However,
setting a breakpoint at the first statement in an unrolled loop may not alow you to
stop at each vector iteration.

S-2179-71

Using Interlanguage Communication [12]

In some situations, it is necessary or advantageous to make calls to assembly or
Fortran functions from C or C++ programs. This chapter describes how to make
such calls. It also discusses calls to C and C++ functions from Fortran and assembly
language. For additional information about interlanguage communication, see
Interlanguage Programming Conventions. The calling sequence is described in detail
onthecal | seq(3) man page.

The C and C++ compilers provide a mechanism for declaring external functions that
are written in other languages. This alows you to write portions of an application in
C, C++, Fortran, or assembly language. This can be useful in cases where the other
languages provide performance advantages or utilities that are not availablein C

or C++.

This chapter describes how to call assembly language and Fortran programs from a
C or C++ program. It also discusses the issues related to calling C or C++ programs
from other languages.

12.1 Calls between C and C++ Functions

The following requirements must be considered when making calls between functions
written in C and C++:

e InCray C++,theextern " C' linkageis required when declaring an external
function that is written in Cray C or when declaring a Cray C++ function that is
to be called from Cray C. Normally the compiler will mangle function namesto
encode information about the function's prototype in the external name. This
prevents direct access to these function names from a C function. Theext ern
" C" keyword will prevent the compiler from performing name mangling.

e The program must be linked using the CC command.

* The program's main routine must be C or C++ code compiled with the CC
command.

S-2179-71 127

Cray C and C++ Reference Manual

128

Objects can be shared between C and C++. There are some Cray C++ objects that
are not accessible to Cray C functions (such as classes). The following object types
can be shared directly:

Integral and floating types.

Structures and unions that are declared identically in C and C++. In order for
structures and unions to be shared, they must be declared with identical members

in the identical order.

Arrays and pointers to the above types.

In the following example, a Cray C function (C_add_f unc) iscalled by the Cray
C++ main program:

#i ncl ude <i ostream h>

extern "C'" int C.add_func(int, int);
int global __int = 123;

mai n()

{

}

int res, i;

cout << "Start C++ mmin" << endl;

/[* Call C function to add two integers and return result.
cout << "Call C C add_func" << endl;

res = C_add_func(10, 20);

cout << "Result of C add func =" << res << endl;
cout << "End C++ mmin << endl;

The Cray C function (C_add_f unc) isasfollows:

#i ncl ude <stdio. h>

extern int global _int;

int C.add_func(int pl, int p2)

{

printf("\tStart C function C add_func.\n");
printf("\t\tpl = %\ n", pl);
printf("\t\tp2 = %\ n", p2);
printf("\t\tglobal _int = %\n", global __int);
return pl + p2;

*/

S-2179-71

Using Interlanguage Communication [12]

The output from the execution of the calling sequence illustrated in the preceding
exampleis as follows:

Start C++ main
Call C C add func

Start C function C add _func.
pl 10
p2 20
gl obal _int = 123

Result of C_add_func = 30
End C++ main

12.2 Calling Fortran Functions and Subroutines from C or C++

This subsection describes the following aspects of calling Fortran from C or C++.
Topics include requirements and guidelines, argument passing, array storage, logical
and character data, accessing named common, and accessing blank common.

12.2.1 Requirements

S-2179-71

Keep the following points in mind when calling Fortran functions from C or C++:

Fortran uses the call-by-address convention. C and C++ use the call-by-value
convention, which means that only pointers should be passed to Fortran
subprograms. For more information, see Argument Passing on page 130.

Fortran arrays are in column-major order. C and C++ arrays are in row-major
order. Thisindicates which dimension isindicated by the first value in an array
element subscript. For more information, see Array Storage on page 130.

Single-dimension arrays of signed 32-bit integers and single-dimension arrays
of 32-bit floating-point numbers are the only aggregates that can be passed as
parameters without changing the arrays.

Fortran character pointers and character pointers from Cray C and C++ are
incompatible. For more information, see Logical and Character Data on page 131.

Fortran logical values and the Boolean values from C and C++ are not fully
compatible. For more information, see Logical and Character Data on page 131.

External C and C++ variables are stored in common blocks of the same name,
making them readily accessible from Fortran programsif the C or C++ variableis
in uppercase.

When declaring Fortran functions or objectsin C or C++, the name must be
specified in all uppercase letters, digits, or underscore characters and consist of
31 or fewer characters.

In Cray C, Fortran functions can be declared using the f or t r an keyword (see
f ort ran Keyword on page 116). Thef ort r an keyword is not availablein

129

Cray C and C++ Reference Manual

Cray C++. Instead, Fortran functions must be declared by specifying ext er n
"C'.

12.2.2 Argument Passing

Because Fortran subroutines expect arguments to be passed by pointers rather than
by value, C and C++ functions called from Fortran subroutines must pass pointers
rather than values.

All argument passing in Cray Cis gtrictly by value. To prepare for afunction call
between two Cray C functions, a copy is made of each actual argument. A function
can change the values of its formal parameters, but these changes cannot affect the
values of the actual arguments. It is possible, however, to pass a pointer. (All array
arguments are passed by this method.) This capability is analogous to the Fortran
method of passing arguments.

In addition to passing by value, Cray C++ also provides passing by reference.

12.2.3 Array Storage

130

C and C++ arrays are stored in memory in row-major order. Fortran arrays are stored
in memory in column-major order. For example, the C or C++ array declarationi nt
Al 3] [2] isstored in memory as:

AL 0] [0] Al 0][1]
AL 1][0] Al 1][1]
Al 2] [0] Al 2] [1]

The previously defined array is viewed linearly in memory as.
ALOI[O] A[OI[1] AL1][O] A[1][1] A[2][0] A[2][1]
The Fortran array declaration | NTEGER A(3, 2) isstored in memory as:

A(1, 1) A(2, 1) A(3, 1)
A(1,2) A(2,2) A(3, 2)

The previously defined array is viewed linearly in memory as.

A(1,1) A(2,1) A3,1) Al2 A22 AS32)

S-2179-71

Using Interlanguage Communication [12]

When an array is shared between Cray C, C++, and Fortran, its dimensions are
declared and referenced in C and C++ in the opposite order in which they are
declared and referenced in Fortran. Arrays are zero-based in C and C++ and are
one-based in Fortran, so in C and C++ you should subtract 1 from the array subscripts
that you would normally use in Fortran.

For example, using the Fortran declaration of array A in the preceding example, the
equivaent declaration in C or C++ is:

int a[2][3];

The following list shows how to access elements of the array from Fortran and from C
or C++:

Fortran Cor C++
A(L, 1) AL0][0]
A(2,1) AL0][1]
A(3, 1) AL0][2]
A(L,2) AL1][0]
A(2,2) AL1][1]
A3, 2) AL 1][2]

12.2.4 Logical and Character Data

Logical and character data need specia treatment for calls between C or C++ and
Fortran. Fortran has a character descriptor that is incompatible with a character
pointer in C and C++. The techniques used to represent logical (Boolean) values also
differ between Cray C, C++, and Fortran.

Mechanisms you can use to convert one type to the other are provided by the
fortran. h header file and conversion macros shown in the following list:

Macro Description
_btol Conversion utility that converts a 0 to a Fortran logical . FALSE.

and a nonzero value to a Fortran logical . TRUE.

_Itob Conversion utility that converts a Fortran logical . FALSE. toa0
and aFortran logical . TRUE. toal.

12.2.5 Accessing Named Common from C and C++

The following example demonstrates how external C and C++ variables are accessible
in Fortran named common blocks. It shows a C or C++ function calling a Fortran
subprogram, the associated Fortran subprogram, and the associated input and output.

S-2179-71 131

Cray C and C++ Reference Manual

In this example, the C or C++ structure _st is accessed in the Fortran subprogram
as common block ST. The Fortran common block ST will be converted to lower
case with atrailing underscore added.

The name of the structure and the converted Fortran common block name must
match. The C and C++ structure member names and the Fortran common block
member names do hot have to match, asis shown in this example.

The following Cray C main program calls the Fortran subprogram FCTN:

#i ncl ude <stdio. h>

struct
{ . .
int i;
doubl e a[10];
| ong doubl e d;
} _st;
mai n()
{ . .
int i;

/[* initialize struct _st */
_st.| = 12345;

for (i =0; i < 10; i++)
_st.a[i] =1i;

_st.d = 1234567890. 1234567890L,;

/* print out the menbers of struct _st */
printf("In C _st.i = 9%, _st.d = %0.10Lf\n", _st.i, _st.d);
printf("ln C _st.a =");
for (i =0; i < 10; i++)
printf("%t. 1f", _st.a[i]);
printf("\n\n");

/* call the fortran function */
FCTN() ;

132 S-2179-71

Using Interlanguage Communication [12]

The following example is the Fortran subprogram FCTN called by the previous Cray
C main program:
C*********** Fortran subprogram(f.f) kkkkkkkhkkkk*

SUBROUTI NE FCTN

COMMON / ST/ STI, STA(10), STD

| NTEGER STI

REAL STA

DOUBLE PRECI SI ON STD

| NTEGER |

WRI TE(6, 100) STI, STD

100 FORMAT (' IN FORTRAN: STI = ', I5, ', STD = ', D25.20)
WRI TE(6, 200) (STA(l), | = 1,10)

200 FORMAT (' IN FORTRAN: STA =', 10F4.1)
END

The previous Cray C and Fortran examples are executed by the following commands,
and they produce the output shown:

%cc -c c.C

%ftn -c f.f

%ftn c.o f.o

% ./ a.out

ST.i = 12345, ST.d = 1234567890. 1234567890

InC ST.a= 0.01.02.03.04.05.06.07.08.009.0

I'N FORTRAN: STI
I'N FORTRAN: STA

12345, STD = .12345678901234567889D+10
0.01.02.03.04.05.06.07.08.009.0

12.2.6 Accessing Blank Common from C or C++

S-2179-71

Fortran includes the concept of a common block. A common block is an area of
memory that can be referenced by any program unit in a program. A named common
block has a name specified in names of variables or arrays stored in the block. A
blank common block, sometimes referred to as blank common, is declared in the
same way, but without a name.

There is no way to access blank common from C or C++ similar to accessing a named
common block. However, you can write a ssmple Fortran function to return the
address of the first word in blank common to the C or C++ program and then use that
as a pointer value to access blank common.

The following example shows how Fortran blank common can be accessed using
C or C++ source code:

#i ncl ude <stdi o. h>

struct st

{

float a;
float b[10];

133

Cray C and C++ Reference Manual

134

} *ST;

#i fdef __cpluspl us
extern "C' struct st *MYCOVWON(void);
extern "C'" void FCTN(voi d);

#el se
fortran struct st *MyYCOWON(void);
fortran void FCTN(voi d);

#endi f

mai n()

{

int i;

ST = MYCOVWMON() ;
ST->a = 1.0;
for (i =0; i < 10; i++)
ST->b[i] =i +2;
printf("\n In C and C++\n");
printf(" a = 9%. 1f\n", ST->a);
printf(" b ");
for (i =0; i < 10; i++)
printf("9%.1f ", ST->b[i]);
printf("\n\n");

FCTN() ;
}

This Fortran source code accesses blank common and is accessed from the C or C++
source code in the preceding example:
SUBROUTI NE FCTN

COWON // STA, STB(10)
PRINT *, "IN FORTRAN'

PRINT *, " STA = ", STA
PRI NT *, " STB = ", STB
STOP
END

FUNCTI ON MYCOMMVON()
COMWON // A
MYCOMMON = LOC(A)
RETURN

END

Thisisthe output of the previous C or C++ source code:

1.0
2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0

a
b

Thisisthe output of the previous Fortran source code:

STA
STB

In
N
w
N
o
(o)}
~
o0}
o

10., 11.

S-2179-71

Using Interlanguage Communication [12]

12.2.7 Cray C and Fortran Example

Here is an example of a Cray C function that calls a Fortran subprogram. The Fortran
subprogram example follows the Cray C function example, and the input and output
from this sequence follows the Fortran subprogram example.

Note: This example assumes that the Cray Fortran function is compiled with
the-s def aul t 32 option enabled. The examples will not work if the- s
def aul t 64 option is enabled.

/* C program (main.c): */

#i ncl ude <stdio. h>
#i ncl ude <string. h>
#i ncl ude <fortran. h>

/* Declare prototype of the Fortran function. Note the last */
/* argunment passes the length of the first argunent. */
fortran double FTNFCTN (char *, int *, int);

doubl e FLOAT1 = 1. 6;
double FLOAT2; /* Initialized in FTNFCTN */

mai n()

{
int clogical, ftnlogical, cstringlen;
doubl e rtnval ;
char *cstring = "C Character String";

/* Convert clogical to its Fortran equival ent */
clogical = 1;
ftnlogical = _btol (clogical);

/* Print values of variables before call to Fortran function */
printf(" I'n main: FLOAT1 = %g; FLOAT2 = %g\n",
FLOAT1, FLOAT2);
printf(" Calling FTNFCTN with argunents:\n");
printf(" string =\"%\"; logical = %\n\n", cstring, clogical);
cstringlen = strlen(cstring);
rtnval = FTNFCTN(cstring, & tnlogical, cstringlen);

/* Convert ftnlogical to its C equivalent */
clogical = _Itob(& tnlogical);

/* Print values of variables after call to Fortran function */
printf(" Back in main: FTNFCTN returned %g\n", rtnval);
printf(" and changed the two arguments:\n");
printf(" string =\"%*s\"; logical = %l\n",
cstringlen, cstring, clogical);

S-2179-71 135

Cray C and C++ Reference Manual

136

C Fortran subprogram (ftnfctn.f):

FUNCTI ON FTNFCTN(STR, LOG)

REAL FTNFCTN
CHARACTER* (*) STR
LOG CAL LOG

COVMMON / FLOAT1/ FLOAT1
COMMON / FLOAT2/ FLOAT2
REAL FLOAT1, FLOAT2

DATA FLOAT2/ 2. 4/ ! FLOAT1 INITIALI ZED I N MAI N
C PRI NT CURRENT STATE OF VARI ABLES
PRI NT*, ' I'N FTNFCTN: FLOAT1 = ', FLOAT],
1 ', FLOAT2 = ', FLOAT2
PRI NT*, ' ARGUVENTS: STR = "', STR
C CHANGE THE VALUES FOR STR(I NG AND LOG(I CAL)
STR = 'New Fortran String'

LOG = . FALSE.

FTNFCTN = 123. 4

PRI NT*, ' RETURNI NG FROM FTNFCTN W TH ',

PRI NT*
RETURN
END

LOG

The previous Cray C function and Fortran subprogram are executed by the following

commands and produce the following output:

%cc -c main.c

%ftn -c ftnfctn.f

% ftn main.o ftnfctn.o

% ./ a.out

In main: FLOAT1 = 1.6; FLOAT2 = 2.4
Calling FTNFCTN wi t h argunents:

string = "C Character String"; |ogical

IN FTNFCTN: FLOAT1 = 1.6; FLOAT2 = 2.4

ARGUMENTS: STR = "C Character String";

RETURNI NG FROM FTNFCTN W TH 123. 4
Back in main: FTNFCTN returned 123.4
and changed the two argunents:

string = "New Fortran String"; |ogical

S-2179-71

Using Interlanguage Communication [12]

12.2.8 Calling a Fortran Program from Cray C++

The following example illustrates how a Fortran program can be called from a Cray
C++ program:

#i ncl ude <i ostream h>
extern "C'" int FORTRAN_ADD I NTS(int *argl, int &arg2);

mai n()
{
int numl, nun®, res;
cout << "Start C++ main" << endl << endl;

/1 Call FORTRAN function to add two integers and return result.
// Note that the second argunent is a reference paraneter so
/1it is not necessary to take the address of the

/lvariabl e nung.

numl = 10;

num2 = 20;

cout << "Before Call to FORTRAN_ADD | NTS" << endl;

res = FORTRAN_ADD | NTS(&nunil, nun®);

cout << "Result of FORTRAN Add = " << res << endl << endl;
cout << "End C++ mmin" << endl;

}

The Fortran program that is called from the Cray C++ mai n function in the
preceding example is as follows:

| NTEGER FUNCTI ON FORTRAN_ADD_| NTS(Argl, Arg2)
| NTEGER Argl, Arg2

PRINT *," FORTRAN ADD INTS, Argl,Arg2 =", Argl, Arg2
FORTRAN_ADD I NTS = Argl + Arg2
END

The output from the execution of the preceding exampleis as follows:

Start C++ main

Before Call to FORTRAN_ADD | NTS
FORTRAN_ADD | NTS, Argl, Arg2 = 10, 20

Result of FORTRAN Add = 30

End C++ nmain

S-2179-71 137

Cray C and C++ Reference Manual

12.3 Calling a C or C++ Function from Fortran

138

A C or C++ function can be called from a Fortran program. One of two methods can
be used to call C functions from Fortran: the C interoperability feature provided by
the Fortran 2000 facility or the method documented in this section. C interoperability
provides a standard portable interoperability mechanism for Fortran and C programs.
For more information about C interoperability, see the Cray Fortran Reference
Manual. If you are using the method documented in this section to call C functions
from Fortran, keep in mind the information in Calling Fortran Functions and
Subroutines from C or C++ on page 129.

When calling a Cray C++ function from a Fortran program, observe the following
rules:

e TheCray C++ function must be declared withext ern " C" linkage.
e The program must be linked with the CC command.

e The program's main routine must be C or C++ code compiled with the CC
command.

The example that follows illustrates a Fortran program, mai n. f , that calls a Cray
C function, ct ct n. c¢. The Cray C function being called, the commands required,
and the associated input and output are al so included.

Note: This example assumes that the Cray Fortran program is compiled with
the-s def aul t 32 option enabled. The examples will not work if the - s
def aul t 64 option is enabled.

Example 15. Calling a C function from Fortran

Fortran program mai n. f source code:

C Fortran program (main.f):
PROGRAM MAI N

REAL CFCTN

COMMVON / FLOAT1/ FLOAT1

COVMON / FLOAT2/ FLOAT2

REAL FLOAT1, FLOAT2

DATA FLOAT1/1.6/ ! FLOAT2 INITIALIZED IN cfctn.c
LOG CAL LOG

CHARACTER* 24 STR

REAL RTNVAL

C INTIALI ZE VARI ABLES STR(I NG AND LOGE | CAL)
STR = 'Fortran Character String'
LOG = . TRUE.

C PRINT VALUES OF VARI ABLES BEFORE CALL TO C FUNCTI ON

PRINT*, '"In main.f: FLOAT1 ="', FLOAT1,

1 ', FLOAT2 = ', FLOAT2

PRINT*, '"Calling cfctn.c with these argunents:
PRI NT*, 'LOG ="', LOG

S-2179-71

Using Interlanguage Communication [12]

S-2179-71

PRINT*, 'STR ="', STR
RTNVAL = CFCTN(STR LOG)
C PRI NT VALUES OF VARI ABLES AFTER CALL TO C FUNCTI ON

PRI NT*, 'Back in main.f:: cfctn.c returned ', RTNVAL
PRI NT*, 'and changed the two argunents to:

PRINT*, '"LOG ="', LOG
PRINT*, "STR ="', STR
END PROGRAM

Compile mai n. f , creating nai n. o:

%ftn -c main.f

C function cf ct n. ¢ source code:

/* C function (cfctn.c) */
#i ncl ude <fortran. h>

#i ncl ude <stdi o. h>

#i nclude <stdlib. h>

#include <string. h>

fl oat FLOATI1; /* Initialized in MAIN */
float FLOAT2 = 2. 4;

/* The slen argunent passes the length of string in str */
float cfctn_(char * str, int *log, int slen)
{

int clog;

float rtnval;

char *cstring;

/* Convert |og passed fromFortran MAIN */
/* into its C equivalent */
cstring = mall oc(sl en+l);
strncpy(cstring, str, slen);
cstring[slen] = '\0";
clog = _Itob(log);

/* Print the current state of the variables */
printf(" In CFCTN: FLOAT1 = % 1f; FLOAT2 = % 1f\n",
FLOAT1, FLOAT2);
printf(" Argunents: str ='%'; log = %\ n",
cstring, clog);

/* Change the values for str and log */
strncpy(str, "C Character String ", 24);
*log = O;

rtnval = 123.4;
printf(" Returning fromCFCTN with % 1f\n\n", rtnval);
return(rtnval);

}

Compilecf ct n. c, creating cf ct n. o:

%cc -c cfctn.c

139

Cray C and C++ Reference Manual

140

Link mai n. o and cf ct n. 0, creating executablei nt er | angl:

%ftn -o interlangl main.o cfctn.o

Run programi nt er | angl:

% ./interlangl

Program output:

In main.f: FLOAT1 = 1.60000002 ; FLOAT2 = 2.4000001
Calling cfctn.c with these argunents:

LOG= T

STR = Fortran Character String

In CFCTN. FLOAT1 = 1.6; FLOAT2 = 2.4

Argunents: str = 'Fortran Character String'; log =1
Returning from CFCTN with 123.4

Back in main.f:: cfctn.c returned 123.400002
and changed the two argunents to:

LOG = F

STR = C Character String

S-2179-71

Implementation-defined Behavior [13]

This chapter describes compiler behavior that is defined by the implementation
according to the C and/or C++ standards. The standards require that the behavior of
each particular implementation be documented.

The C and C++ standards define implementation-defined behavior as behavior, for
a correct program construct and correct data, that depends on the characteristics of
the implementation. The behavior of the Cray C and C++ compilers for these cases
is summarized in this chapter.

13.1 Messages

All diagnostic messages issued by the compilers are reported through the

Cray Linux Environment (CLE) message system. For information about messages
issued by the compilers and for information about the Cray Linux Environment
(CLE) message system, see Appendix C, Using the Compiler Message System on
page 165.

13.2 Environment

S-2179-71

When ar gc and ar gv are used as parameters to the mai n function, the array
members ar gv[0] through ar gv[ar gc- 1] contain pointers to strings that
are set by the command shell. The shell sets these arguments to the list of words
on the command line used to invoke the compiler (the argument list). For further
information about how the words in the argument list are formed, refer to the
documentation on the shell in which you are running. For information about
Cray Linux Environment (CLE) shells, seethe sh(1) or csh(1) man page.

A third parameter, char ** envp, provides access to environment variables. The
value of the parameter is a pointer to the first element of an array of null-terminated
strings that matches the output of the env (1) command. The array of pointersis
terminated by a null pointer.

The compiler does not distinguish between interactive devices and other,
noninteractive devices. The library, however, may determine that st di n, st dout ,
andstderr (ci n,cout,andcerr inCray C++) refer to interactive devices and
buffer them accordingly.

141

Cray C and C++ Reference Manual

13.2.1 Identifiers

13.2.2 Types

142

The identifier (as defined by the standards) is merely a sequence of letters and digits.
Specific uses of identifiers are called names.

The Cray C compiler treats the first 255 characters of a name as significant,
regardless of whether it isan internal or external name. The case of names, including
external names, is significant. In Cray C++, al characters of a name are significant.

Table 12 summarizes Cray C and C++ types and the characteristics of each type.
Representation is the number of bits used to represent an object of that type. Memory
is the number of storage bits that an object of that type occupies.

In the Cray C and C++ compilers, size, in the context of the si zeof operator,
refers to the size allocated to store the operand in memory; it does not refer to
representation, as specified in Table 12. Thus, thesi zeof operator will return asize
that is equal to the value in the Memory column of Table 12 divided by 8 (the number
of bitsin abyte).

Table 12. Data Type Mapping

Representation Size and Memory Storage

Type Size (bits)

bool (C++) 8

_Bool (C) 8

char 8

wchar t 32

short 16

i nt 32

| ong 64

l ong | ong 64

fl oat 32

doubl e 64

| ong doubl e 64

fl oat conpl ex 64 (each part is 32 hits)
doubl e conpl ex 128 (each part is 64 bits)
| ong doubl e conpl ex 128 (each part is 64 bits)
Pointers 64

S-2179-71

Implementation-defined Behavior [13]

Note: Vectorization of 8- and 16-hit datatypesis deferred.

13.2.3 Characters

The full 8-bit ASCII code set can be used in source files. Characters not in the
character set defined in the standard are permitted only within character constants,
string literals, and comments. The- h [no] cal char s option allows the use of the
$ signinidentifier names. For more information about the - h [no] cal char s
option, see- h [no] cal char s on page 32.

A character consists of 8 bits. Up to 8 characters can be packed into a 64-bit word.
A plain char type (that is, one that is declared without asi gned or unsi gned
keyword) is treated as a signed type.

Character constants and string literals can contain any characters defined in the 8-bit
ASCII code set. The characters are represented in their full 8-bit form. A character
constant can contain up to 8 characters. The integer value of a character constant

is the value of the characters packed into aword from left to right, with the result
right-justified, as shown in the following table:

Table 13. Packed Characters

Character constant Integer value
'a' 0x61
"ab’ 0x6162

In a character constant or string literal, if an escape sequence is not recognized, the
\ character that initiates the escape sequence is ignored, as shown in the following
table:

Table 14. Unrecognizable Escape Sequences

Character constant Integer value Explanation

"\a' 0x7 Recognized asthe ASCII BEL character
"\ 8 0x38 Not recognized; ASCII value for 8
"\ 0x5b Not recognized; ASCII valuefor [
"\c' 0x63 Not recognized; ASCII vauefor ¢

S-2179-71 143

Cray C and C++ Reference Manual

13.2.4 Wide Characters

13.2.5 Integers

Wide characters are treated as signed 64-bit integer types. Wide character constants
cannot contain more than one multibyte character. Multibyte characters in wide
character constants and wide string literals are converted to wide charactersin the
compiler by calling the mbt owc () function. The current locale in effect at the time
of compilation determines the method by which nbt owc () converts multibyte
characters to wide characters, and the shift states required for the encoding of
multibyte characters in the source code. If a wide character, as converted from a
multibyte character or as specified by an escape sequence, cannot be represented in
the extended execution character set, it is truncated.

All integral values are represented in atwo's complement format. For representation
and memory storage reguirements for integral types, see Table 12.

When an integer is converted to a shorter signed integer, and the value cannot be
represented, the result is the truncated representation treated as a signed quantity.
When an unsigned integer is converted to a signed integer of equal length, and the
value cannot be represented, the result is the original representation treated as a
signed quantity.

The bitwise operators (unary operator ~ and binary operators <<, >>, &, ", and |)
operate on signed integers in the same manner in which they operate on unsigned
integers. The result of el >> €2, where €l is a negative-valued signed integral
value, isthat el is right-shifted €2 bit positions; vacated bits are filled with 1s. This
behavior can be modified by using the- h nosi gnedshi ft s option (see- h

[no] si gnedshi ft s on page 32). Bits higher than the sixth bit are not ignored.

Theresult of the/ operator isthe largest integer less than or equal to the algebraic
quotient when either operand is negative and the result is a nonnegative value. If

the result is a negative value, it is the smallest integer greater than or equal to the
algebraic quotient. The/ operator behaves the same way in C and C++ asin Fortran.

The sign of the result of the percent (%9 operator is the sign of the first operand.

Integer overflow isignored. Because some integer arithmetic uses the floating-point
instructions, floating-point overflow can occur during integer operations. Division by
0 and all floating-point exceptions, if not detected as an error by the compiler, can
cause a run time abort.

13.2.6 Arrays and Pointers

144

Anunsi gned | ong value can hold the maximum size of an array. The type
si ze_t isdefinedtobeat ypedef namefor unsi gned | ong inthe headers:
mal | oc. h, stddef. h,stdio. h,stdlib.h,string.h,andtine. h. If
more than one of these headersisincluded, only thefirst definessi ze_t .

S-2179-71

Implementation-defined Behavior [13]

13.2.7 Registers

A typel ong can hold the difference between two pointers to elements of the same
array. Thetypeptrdi ff _t isdefinedtobeat ypedef namefor| ong inthe
header st ddef . h.

If apointer type'svalueis cast to asigned or unsigned | ong i nt, and then cast
back to the original type's value, the two pointer values will compare equal.

Pointers on Cray Linux Environment (CLE) systems are byte pointers. Byte pointers
use the same internal representation as integers; a byte pointer counts the numbers
of bytes from the first address.

A pointer can be explicitly converted to any integral type large enough to hold it. The
result will have the same bit pattern as the original pointer. Similarly, any value of
integral type can be explicitly converted to a pointer. The resulting pointer will have
the same bit pattern as the original integral type.

Use of the register storage class in the declaration of an object has no effect on
whether the object is placed in aregister. The compiler performs register assignment
aggressively; that is, it automatically attempts to place as many variables as possible
into registers.

13.2.8 Classes, Structures, Unions, Enumerations, and Bit Fields

S-2179-71

Accessing a member of aunion by using a member of a different type resultsin an
attempt to interpret, without conversion, the representation of the value of the member
as the representation of avalue in the different type.

Members of a class or structure are packed into words from left to right. Padding is
appended to a member to correctly align the following member, if necessary. Member
alignment is based on the size of the member:

« For amember bit field of any size, aignment is any bit position that allows the
member to fit entirely within a 64—bit word.

* For amember with a size less than 64 bits, alignment is the same as the size.
For example, achar has asize and alignment of 8 bits; af | oat hasasizeand
alignment of 32 bits.

» For amember with asize equal to or greater than 64 bits, alignment is 64 bits.

» For amember with array type, aignment is equal to the alignment of the element
type.

A plaini nt type bit fieldistreated asasi gned i nt hit field.

The values of an enumeration type are represented in thetype si gned i nt inC;
they are a separate type in C++.

145

Cray C and C++ Reference Manual

13.2.9 Qualifiers

When an object that hasvol at i | e-qualified type is accessed, it is simply a
reference to the value of the object. If the value is not used, the reference need not
result in aload of the value from memory.

13.2.10 Declarators

A maximum of 12 pointer, array, and/or function declarators are allowed to modify
an arithmetic, structure, or union type.

13.2.11 Statements

The compiler has no fixed limit on the maximum number of case values allowed
inasw t ch statement.

The Cray C++ compiler parses asmstatements for correct syntax, but otherwise
ignores them.

13.2.12 Exceptions

In Cray C++, when an exception is thrown, the memory for the temporary copy of
the exception being thrown is allocated on the stack and a pointer to the allocated
space is returned.

13.2.13 System Function Calls

For adescription of the form of the unsuccessful termination status that is returned
from acal to exi t (3), seethe exi t (3) man page.

13.3 Preprocessing

146

The value of a single-character constant in a constant expression that controls
conditional inclusion matches the value of the same character in the execution
character set. No such character constant has a negative value. For each, ' a' hasthe
same value in the two contexts:

#f 'a == 97

if ("a == 97)

The- | option and the method for locating included source filesis described in - |
incldir on page 54.

S-2179-71

Implementation-defined Behavior [13]

S-2179-71

The source file character sequence in a#i ncl ude directive must be avalid
UNICOS/mp or Cray Linux Environment (CLE) file name or path name. A

#i ncl ude directive may specify afile name by means of a macro, provided the
macro expands into a source file character sequence delimited by double quotes or
< and > delimiters, as follows:

#defi ne nyheader "./nyheader.h"
#i ncl ude nyheader

#defi ne STDI O <stdi 0. h>
#i nclude STDI O

Themacros___ DATE__and __TI ME__ contain the date and time of the beginning
of translation. For more information, refer to the description of the predefined macros
in Chapter 9, Using Predefined Macros on page 119.

The#pr agma directives are described in Chapter 3, Using #pr agna Directives on
page 65.

147

Cray C and C++ Reference Manual

148 S-2179-71

Using Libraries and the Loader [A]

This appendix describes the libraries that are available with the Cray C and C++
compilers and the loader.

A.1 Cray C and C++ Libraries

A.2 Loader

S-2179-71

Libraries that support Cray C and C++ are automatically available when you use
the CC or cc command to compile your programs. These commands automatically
issue the appropriate directives to load the program with the appropriate functions. If
your program strictly conforms to the C or C++ standards, you do not need to know
library names and locations. If your program requires other libraries or if you want
direct control over the loading process, more knowledge of the loader and libraries
is necessary.

The Standard Template Library (STL) is a C++ library of container classes,
algorithms, and iterators; it provides many of the basic algorithms and data structures
of computer science. The STL isageneric library, meaning that its components are
heavily parameterized: almost every component in the STL is atemplate. Be sure you
have a complete understanding of templates and how they work before using them.

When you use the cc or CC command to invoke the compiler, and the program
compiles without errors, the loader is called. Specifying the - ¢ option on the
command line produces relocatable object files (*. 0) without calling the loader.
These relocatable object files can then be used as input to the loader command by
specifying the file names on the appropriate loader command line.

For example, the following command line compiles afilecalled t ar get . ¢ and
produces the relocatable object file called t ar get . o in your current working
directory:

cc -c target.c

You can then usefilet ar get . o asinput to the loader or save the file to use with
other relocatable object files to compile and create alinked executable file (a. out
by default).

149

Cray C and C++ Reference Manual

Because of the special code needed to handle templates, constructors, destructors,
and other C++ language features, object files generated by using the CC command
should be linked using the CC command.

150 S-2179-71

Using Cray C and C++ Dialects [B]

This appendix details the features of the C and C++ languages that are accepted by
the Cray C and C++ compilers, including certain language dial ects and anachronisms.
Users should be aware of these details, especially users who are porting codes from
other environments.

B.1 C++ Language Conformance

The Cray C++ compiler accepts the C++ language as defined by the ISO/IEC
14882:1998 standard, with the exceptions listed in Unsupported C++ Language
Features on page 151.

The Cray C++ compiler dso hasacf r ont compatibility mode, which duplicates a
number of features and bugs of cf r ont . Complete compatibility is not guaranteed
or intended. The mode alows programmers who have used cf r ont features

to continue to compile their existing code (see General Directives on page 67).
Command line options are aso available to enable and disable anachronisms (see
C++ Anachronisms Accepted on page 155) and strict standard-conformance checking
(see Extensions Accepted in Norma C++ Mode on page 156, and Extensions
Accepted in C or C++ Mode on page 157). The command line options are described
in Chapter 2, Invoking the C and C++ Compilers on page 19.

B.1.1 Unsupported C++ Language Features

Theexport keyword for templatesis not supported. It is defined in the 1ISO/IEC
14882:1998 standard, but is not in traditional C++.

B.1.2 Supported C++ Language Features

The following features, which are in the ISO/IEC 14882:1998 standard but not in
traditional C++1, are supported:

* The dependent statement of ani f, whi | e, do-whi | e, or f or is considered
to be a scope, and the restriction on having such a dependent statement be a
declaration is removed.

1 Asdefined in The Annotated C++ Reference Manual (ARM), by Ellis and Stroustrup, Addison Wesley,

1990.

S-2179-71

151

Cray C and C++ Reference Manual

152

The expression tested inani f, whi | e, do-whi | e, or f or, asthe first
operand of a? operator, or as an operand of the &&, | | , or ! operators
may have a pointer-to-member type or a class type that can be converted to a
pointer-to-member type in addition to the scalar cases permitted by the ARM.

Qualified names are alowed in elaborated type specifiers.

A global-scope qualifier is allowed in member references of the form
X.::A:B and p->::A B

The precedence of the third operand of the ? operator is changed.

If control reaches the end of the mai n() routine, and the mai n() routine hasan
integral return type, it istreated asif ar et urn 0; statement was executed.

Pointers to arrays with unknown bounds as parameter types are diagnosed as
errors.

A functional-notation cast of the form A() can be used even if Aisaclass
without a (nontrivial) constructor. The temporary that is created gets the same
default initialization to zero as a static object of the class type.

A cast can be used to select one out of a set of overloaded functions when taking
the address of a function.

Template friend declarations and definitions are permitted in class definitions
and class template definitions.

Type template parameters are permitted to have default arguments.
Function templates may have nontype template parameters.
A referencetoconst vol ati | e cannot beboundto anr val ue.

Qualification conversions such as conversionfromT** to T const * const
are alowed.

Digraphs are recognized.

Operator keywords (for example, and or bi t and) are recognized.

Static data member declarations can be used to declare member constants.
wechar _t isrecognized as a keyword and a distinct type.

bool isrecognized.

RTTI (run time type identification), including dynam c¢_cast andthet ypei d
operator, is implemented.

Declarations in tested conditions (withini f, swi t ch, f or, and whi | e
statements) are supported.

Array newand del et e are implemented.

S-2179-71

Using Cray C and C++ Dialects [B]

S-2179-71

New-style casts (st ati ¢c_cast,rei nterpret _cast,andconst _cast)
are implemented.

Definition of anested class outside its enclosing class is allowed.
nmut abl e is accepted on nonstatic data member declarations.

Namespaces are implemented, including using declarations and directives. Access
declarations are broadened to match the corresponding using declarations.

Explicit instantiation of templates isimplemented.
Thet ypenane keyword is recognized.
expl i cit isaccepted to declare nonconverting constructors.

The scope of avariable declared inthef or - i ni t - st at enent of af or loop
is the scope of the loop (not the surrounding scope).

Member templates are implemented.
The new specialization syntax (usingt enpl at e <>) isimplemented.
Cv qudifiersareretained on r val ues (in particular, on function return values).

The distinction between trivial and nontrivial constructors has been implemented,
as has the distinction between process overlay directives (PODs) and non-PODs
with trivial constructors.

The linkage specification is treated as part of the function type (affecting function
overloading and implicit conversions).

At ypedef name can be used in an explicit destructor call.
Placement delete is supported.

An array alocated via a placement new can be deallocated via delete.
enumtypes are considered to be nonintegral types.

Partial specification of class templates isimplemented.

Partial ordering of function templates is implemented.

Function declarations that match a function template are regarded as independent
functions, not as “guiding declarations’ that are instances of the template.

It is possible to overload operators using functions that take enumtypes and no
class types.

Explicit specification of function template arguments is supported.
Unnamed template parameters are supported.

The new lookup rules for member references of theform x. A: : Band p- >A: : B
are supported.

153

Cray C and C++ Reference Manual

e« Thenotation:: tenplate (and—>t enpl at e, etc.) is supported.

e Inareference of theformf () - >g() , with g a static member function, f () is
evaluated. Likewise for asimilar reference to a static data member. The ARM
specifies that the left operand is not evaluated in such cases.

e enumtypes can contain values larger than can be contained inani nt .

» Default arguments of function templates and member functions of class templates
are instantiated only when the default argument isused in acall.

e String literals and wide string literals have const type.
e Class name injection is implemented.
¢ Argument-dependent (Koenig) lookup of function names is implemented.

» Class and function names declared only in unqualified friend declarations are not
visible except for functions found by argument-dependent |ookup.

« A voi d expression can be specified on areturn statement in avoi d function.

e reinterpret_cast alowscasting apointer to a member of one classto a
pointer to a member of another class even when the classes are unrelated.

« Two-phase name binding in templates as described in the Working Paper is
implemented.

e Putting at ry/ cat ch around the initializers and body of a constructor is
implemented.

 Templatet enpl at e parameters are implemented.
« Universal character set escapes (e.g., \ uabcd) areimplemented.
e extern inline functions are supported.

e Covariant return types on overriding virtual functions are supported.

154 S-2179-71

Using Cray C and C++ Dialects [B]

B.2 C++ Anachronisms Accepted

S-2179-71

C++ anachronisms are enabled by using the - h anachr oni sns command line
option (see- h [no] anachr oni sns (CC) on page 23). When anachronisms are
enabled, the following anachronisms are accepted:

e overl oad isalowed in function declarations. It is accepted and ignored.

» Definitions are not required for static data members that can be initialized by
using the default initialization. The anachronism does not apply to static data
members of template classes; they must always be defined.

e Thenumber of elementsin an array can be specified in an array delete operation.
The value is ignored.

e« Asingleoperat or ++() and oper at or - - () function can be used to
overload both prefix and postfix operations.

e The base class name can be omitted in a base class initializer if thereisonly one
immediate base class.

« Assignment tothet hi s pointer in constructors and destructorsis allowed. This
isonly alowed if anachronisms are enabled and theassi gnnent to this
configuration parameter is enabled.

* A bound function pointer (a pointer to a member function for a given object)
can be cast to a pointer to afunction.

* A nested class name may be used as a non-nested class name if no other class of
that name has been declared. The anachronism is not applied to template classes.

* A referenceto anon-const type may beinitialized from a value of a different
type. A temporary is created, it isinitialized from the (converted) initial value,
and the reference is set to the temporary.

» A referenceto anon-const classtype may beinitialized fromanr val ue of the
class type or aderived class thereof. No (additional) temporary is used.

e A function with old-style parameter declarationsis alowed and can participate in
function overloading as though it were prototyped. Default argument promotion is
not applied to parameter types of such functions when checking for compatibility,
therefore, the following statements declare the overloading of two functions
named f :

int f(int);
int f(x) char x; { return x; }

Note: In C, this code islegal, but has a different meaning. A tentative declaration
of f isfollowed by its definition.

155

Cray C and C++ Reference Manual

B.3 Extensions Accepted in Normal C++ Mode

The following C++ extensions are accepted (except when strict standard conformance
mode is enabled, in which case awarning or caution message may be issued):

156

A fri end declaration for a class can omit the cl ass keyword, as shown in
the following example:

cl ass B;
class A {
friend B, /! Should be "friend class B"

}s

Constants of scalar type can be defined within classes, as shown in the following
example:

class A {
const int size=10;
int a[size];

}s

In the declaration of a class member, a qualified name can be used, as shown in
the following example:

struct A {
int A:f(); /1 Should be int f();

}

An assignment operator declared in a derived class with a parameter type
matching one of its base classesis treated as a “ default” assignment operator;
that is, such a declaration blocks the implicit generation of a copy assignment
operator. Thisiscf r ont behavior that is known to be relied upon in at least one
widely used library. Hereis an example:

struct A{ };

struct B: public A{
B& oper at or =(A&) ;

b

By default, aswell asin cf r ont compatibility mode, there will be no implicit
declaration of B: : oper at or =(const B&), whereasin strict-ANS

mode, B: : oper at or =(A&) is not a copy assignment operator and

B: : operat or=(const B&) isimplicitly declared.

Implicit type conversion between a pointer to anext ern " C' function and
apointer to an ext ern " C++" function is permitted. The following isan
example:

extern "C' void f(); // f's type has extern "C' linkage

void (*pf)() /1 pf points to an extern "C++" function
= &f; /1 error unless inmplicit conversion allowed

S-2179-71

Using Cray C and C++ Dialects [B]

The ? operator, for which the second and third operands are string literals or wide
string literals, can be implicitly converted to one of the following:

char *
wchar t *

In C++ dtring literalsare const . There is a deprecated implicit conversion that
allows conversion of a string literal to char *, dropping the const . That
conversion, however, applies only to simple string literals. Allowing it for the
result of a? operation is an extension:

char *p = x ? "abc" : "def";

B.4 Extensions Accepted in C or C++ Mode

The following extensions are accepted in C or C++ mode except when strict standard
conformance modes is enabled, in which case a warning or caution message may
be issued.

S-2179-71

The special | i nt comments/ * ARGSUSED*/ , / * VARARGS* / (with or without
acount of nonvarying arguments), and / * NOTREACHED* / are recognized.

A trangdation unit (input file) can contain no declarations.
Comment text can appear at the ends of preprocessing directives.

Bit fields can have base types that are enumor integral types in addition to
i nt andunsi gned i nt. Thiscorrespondsto A.6.5.8 in the ANSI Common
Extensions appendix.

enumtags can be incomplete as long as the tag name is defined and resolved by
specifying the brace-enclosed list later.

An extracommais allowed at the end of an enumlist.

The final semicolon preceding the closing of ast r uct or uni on type specifier
can be omitted.

A label definition can be immediately followed by aright brace (}). (Normally,
a statement must follow a label definition.)

An empty declaration (a semicolon preceded by nothing) is allowed.

Aninitializer expression that isa single value and is used to initialize an entire
static array, struct, or union does not need to be enclosed in braces. ANSI C
requires braces.

In aninitializer, a pointer constant value can be cast to an integral typeif the
integral type is large enough to contain it.

The address of a variable with register storage class may be taken.

157

Cray C and C++ Reference Manual

158

In anintegral constant expression, an integer constant can be cast to a pointer
type and then back to an integral type.

In duplicate size and sign specifiers (for example, short short or
unsi gned unsi gned) the redundancy isignored.

Benign redeclarations of t ypedef namesare alowed. That is, at ypedef
name can be redeclared in the same scope with the same type.

Dollar sign ($) characters can be accepted in identifiers by using the
-h cal char s command line option. Thisis not allowed by default.

Numbers are scanned according to the syntax for numbers rather than the
pp-number syntax. Thus, 0x123e+1 is scanned as three tokens instead of one
token that is not valid. If the- h conf or moption is specified, the pp-number
syntax is used.

Assignment and pointer differences are alowed between pointers to types that
are interchangeabl e but not identical, for example, unsi gned char * and
char *. Thisincludes pointersto integral types of the same size (for example,
int *andl ong *). Assignment of astring constant to a pointer to any kind of
character is allowed without a warning.

Assignment of pointer typesis allowed in cases where the destination type

has added type qualifiers that are not at the top level (for example, i nt ** to
const int **). Comparisonsand pointer difference of such pairs of pointer
types are also allowed.

In operations on pointers, a pointer to voi d is always implicitly converted

to another type if necessary, and a null pointer constant is always implicitly
converted to a null pointer of the right type if necessary. In ANSI C, these are
allowed by some operators, and not by others (generally, where it does not make
sense).

Pointers to different function types may be assigned or compared for equality
(==) or inequality (! =) without an explicit type cast. This extension is not
allowed in C++ mode.

A pointer tovoi d can be implicitly converted to or from a pointer to a function
type.

External entities declared in other scopes are visible:

void fi1(void) { extern void f(); }
void f2() { f(); /* Using out of scope declaration */ }

In C mode, end-of-line comments (/ /) are supported.

A non-lvalue array expression is converted to a pointer to the first element of the
array when it is subscripted or similarly used.

S-2179-71

Using Cray C and C++ Dialects [B]

Thef or t r an keyword. For more information, seef ort r an Keyword on
page 116.

Cray hexadecimal floating point constants. For more information, see
Hexadecimal Floating-point Constants on page 116.

B.5 C++ Extensions Accepted in cf r ont Compatibility Mode

S-2179-71

Thecfront compatibility modeis enabled by the- h cf r ont command-line
option. The following extensions are accepted in cf r ont compatibility mode:

Type qualifierson thet hi s parameter are dropped in contexts such asin the
following example:

struct A {
void f() const;

b
void (A:*fp)() = &A:: f;

Thisis asafe operation. A pointer to aconst function can be put into a pointer
to non-const , because a call using the pointer is permitted to modify the object
and the function pointed to will not modify the object. The opposite assignment
would not be safe.

Conversion operators that specify a conversion to voi d are allowed.

A nonstandard f r i end declaration can introduce anew type. A fri end
declaration that omits the elaborated type specifier is alowed in default mode,
however, in cf r ont mode the declaration can aso introduce a new type name.
An example follows:

struct A{
friend B,

}s

The third operator of the ? operator is a conditional expression instead of an
assignment expression.

A reference to a pointer type may be initialized from a pointer value without use
of atemporary even when the reference pointer type has additiona type qualifiers
above those present in the pointer value. For example:

int *p;
const int *& = p; /1 No tenporary used

A reference can beinitialized to NULL.

Because cf r ont does not check the accessibility of types, access errors for types
are issued as warnings instead of errors.

159

Cray C and C++ Reference Manual

* When matching arguments of an overloaded function, aconst variable with a
value of 0 isnot considered to be a null pointer constant. In general, in overload
resolution, anull pointer constant must be entered as"0” to be considered a null
pointer constant (e.g., \O' is not considered a null pointer constant).

* An adternate form of declaring pointer-to-member-function variablesis supported,
as shown in the following example:

struct A {

void f(int);

static void sf(int);

typedef void A :T3(int); // nonstd typedef decl
typedef void T2(int); /1 std typedef

H
typedef void A::T(int); /1 nonstd typedef decl

T pnf = &A: f; /1 nonstd ptr-to-menber decl
A T2* pf = A :sf; /1 std ptr to static mem decl
A :T3* pnf2 = &A:: f; /1 nonstd ptr-to-nmenber decl

In this example, T is construed to name a function type for a nonstatic member
function of class A that takesan i nt argument and returnsvoi d; the use of
such types is restricted to nonstandard pointer-to-member declarations. The
declarations of T and pnf in combination are equivalent to the following single
standard pointer-to-member declaration:

void (A:* pnf)(int) = &A::f;

A nonstandard pointer-to-member declaration that appears outside of a class
declaration, such as the declaration of T, is normally not valid and would
cause an error to be issued. However, for declarations that appear within a
class declaration, such as A: : T3, this feature changes the meaning of a valid
declaration. cf r ont version 2.1 accepts declarations, such as T, even when A
is an incomplete type; so this case is also accepted.

* Protected member access checking is not done when the address of a protected
member is taken. For example:

class B { protected: int i; };
class D: public B { void nf()};

void D::nf() {
int B::* pm1l
int D:* pm2
}

Note: Protected member access checking for other operations (such as
everything except taking a pointer-to-member address) is done normally.

&B::i; [/l error, OKin cfront node
&D: :i; /1 XK

160 S-2179-71

Using Cray C and C++ Dialects [B]

» Thedestructor of aderived class can implicitly call the private destructor of a base
class. In default mode, thisis an error but in cf r ont mode it is reduced to a
warning. For example:

class A {
~A();
b
class B: public A {
~B();
b
B:: ~B(){} /1 Error except in cfront node
¢ When disambiguation requires deciding whether something is a parameter
declaration or an argument expression, the pattern type-name-or-keyword
(identifier . ..) istreated asan argument. For example:
class A{ A(); };
doubl e d;
A x(int(d));
A(x2);

By default, i nt (d) isinterpreted as a parameter declaration (with redundant
parentheses), and so x isafunction; but in cf r ont compatibility modei nt (d)
isan argument and x is avariable.

The declaration A(x2) is also misinterpreted by cf r ont . It should be
interpreted as the declaration of an object named x2, but in cf r ont modeit is
interpreted as a function style cast of x2 to the type A.

Similarly, the following declaration declares a function named xzy, that takes
a parameter of type function taking no arguments and returning ani nt . In

cf r ont mode, thisisinterpreted as adeclaration of an object that isinitialized
with thevaluei nt () , which evaluatesto O.

int xyz(int());

* A named hit field can have asize of 0. The declaration is treated as though no
name had been declared.

« Plain hit fields (such as bit fields declared with atype of i nt) are always signed.

S-2179-71 161

Cray C and C++ Reference Manual

e Thename given in an elaborated type specifier can beat ypedef namethat is
the synonym for a class name. For example:

typedef class AT,
class T *pa; // No error in cfront npde

* No warning is issued on duplicate size and sign specifiers, as shown in the
following example:

short short int i; // No warning in cfront node

« Virtual function table pointer-update code is not generated in destructors for base
classes of classes without virtual functions, even if the base class virtual functions
might be overridden in afurther derived class. For example:

struct A {
virtual void f() {}

A() {}
}jA() {}
siruct B : public A {

B() {}
~B() {f();} /1 Should call A :f according to ARM 12.7

b
struct C: public B {
void f() {}

}oc
Incfront compatibility mode, B: : ~BcalsC: : f.

e Anextracommais alowed after the last argument in an argument list. For
example:

f(1, 2,);
* A constant pointer-to-member function can be cast to a pointer-to-function, asin
the following example. A warning is issued.

struct A{int f();};

main () {

int (*p)();

p={(int (*)())A:f; /1 Okay, with warning
}

162 S-2179-71

Using Cray C and C++ Dialects [B]

S-2179-71

Arguments of class types that allow bitwise copy construction but also have
destructors are passed by value like C structures, and the destructor is not called
on the copy. In norma mode, the class object is copied into atemporary, the
address of the temporary is passed as the argument, and the destructor is called
on the temporary after the call returns. Because the argument is passed by
value instead of by address, code like this compiled in cf r ont mode is not
calling-sequence compatible with the same code compiled in normal mode. In
practice, thisis not much of a problem, since classes that allow bitwise copying
usually do not have destructors.

A union member may be declared to have the type of a class for which the user
has defined an assignment operator (as long as the class has no constructor or
destructor). A warning is issued.

When an unnamed class appearsin at ypedef declaration, thet ypedef name
may appear as the class name in an elaborated type specifier. For example:

typedef struct { int i, j; } S
struct S x; // No error in cfront node

Two member functions may be declared with the same parameter types when one
is static and the other is nonstatic with afunction qualifier. For example:
class A {

void f(int) const;

static void f(int); // No error in cfront node

}

The scope of avariable declared inthef or-i ni t - st at enent isthe scope
towhich thef or statement belongs. For example:
int f(int i) {

for (int j =0; j <i; ++) {/* ... *}

return j; // No error in cfront node

}

Function types differing only in that one isdeclared ext ern " C' and the other
extern " C++" can betreated asidentical:

typedef void (*PF)();

extern "C' typedef void (*PCF)();
void f(PF);

void f(PCF);

By contrast, in standard C++, PF and PCF are different and incompatible types;
PF isapointer toanext ern " C++" function whereas PCF is a pointer to an
extern " C" function; and the two declarations of f create an overload set.

Functions declared i nl i ne have internal linkage.

enumtypes are regarded as integral types.

163

Cray C and C++ Reference Manual

164

An uninitialized const object of non-POD class type is allowed even if its default
constructor isimplicitly declared as in the following example:

struct A { virtual void f(); int i; };
const A a;

A function parameter type is alowed to involve a pointer or reference to array of
unknown bounds.

If the user declaresan oper at or = function in a class, but not one that can serve
asthe default oper at or =, and bitwise assignment could be done on the class,
adefault oper at or = is not generated. Only the user-written oper at or =
functions are considered for assignments, so bitwise assignment is not done.

S-2179-71

Using the Compiler Message System [C]

This appendix describes how to use the message system to control and use messages
issued by the compiler. Explanatory texts for messages can be displayed online
through the use of the expl ai n command.

C.1 Expanding Messages with the expl ai n Command

You can use the expl ai n command to display an explanation of any message issued
by the compiler. The command takes as an argument, the message number, including
the number's prefix. The prefix for Cray C and C++ is CC.

In the following sample dialog, the cc command invokes the compiler on source
filebug. c. Message CC- 24 isdisplayed. The expl ai n command displays the
expanded explanation for this message.

% cc bug. c
CC-24 cc: ERROR File = bug.c, Line =1
An invalid octal constant is used.

int i = 018;

N

1 error detected in the conpilation of "bug.c".
% expl ai n CC-24

An invalid octal constant is used.
Each digit of an octal constant nust be between 0 and 7, inclusive. One or

more digits in the indicated octal constant are outside of this range.
Change each digit in the octal constant to be within the valid range.

C.2 Controlling the Use of Messages

This section summarizes the command line options that affect the issuing of messages
from the compiler.

S-2179-71 165

Cray C and C++ Reference Manual

C.2.1 Command Line Options

Option Description

-h errorlimt][=n] Specifies the maximum number of
error messages the compiler prints
before it exits.

-h [no] message=n[:...] Enables or disables the specified
compiler messages, overriding
-h nsgl evel .

-h nsgl evel _n Specifies the lowest severity level of

messages to be issued.

-h [no] nsgs Enables or disables the writing of
optimization messagesto st derr .

h [no] negnsgs Enables or disables the writing
of messages to st derr that
indicate why optimizations such as
vectorization or inlining did not occur
in a given instance.

-h report =args Generates optimization report
messages.

C.2.2 Environment Options for Messages
The following are used by the message system.

Variable Description

NLSPATH Specifies the default value of
the message system search path
environment variable.

LANG Identifies your requirements for
native language, local customs, and
coded character set with regard to the
message system.

VEG_FORNAT Controls the format in which you
receive error messages.

166 S-2179-71

Using the Compiler Message System [C]

C.2.3 ORI G_CVMD_NAME Environment Variable

You can override the command name printed in the message. If the environment
variable ORI G_CVD_NAME is set, the value of ORI G_CVD_NAME is used as the
command name in the message. This functionality is provided for use with shell
scripts that invoke the compiler. By setting ORI G_CVD_NAME to the name of the
script, any message printed by the compiler appears as though it was generated by the
script. For example, the following C shell script is named newcc:

#
set env ORI G_CVD_NAME ' basenane $0'
cc $*

A message generated by invoking newc ¢ resembles the following:

CC-8 newcc: ERROR File = x.c, Line =1
A new-line character appears inside a string literal.

Because the environment variable ORI G_CVD_NAME is set to newc ¢, this appears as
the command name instead of cc (1) in this message.

Caution: The ORI G_CVD_NANME environment variable is not part of the message
system. It is supported by the Cray C and C++ compilers as an aid to programmers.
Other products, such as the Fortran compiler and the loader, may support this
variable. However, you should not rely on support for this variable in any other
product.

You must be careful when setting the environment variable ORI G_CVD_NAME. If
you set ORI G_CIVD_NAME inadvertently, the compiler may generate messages with
an incorrect command name. This may be particularly confusing if, for example,

ORI G_CMVD_NAME is set to newcc when the Fortran compiler prints a message. The
Fortran message will look as though it came from newcc.

C.3 Message Severity

S-2179-71

Each message issued by the compiler falls into one of the following categories of
messages, depending on the severity of the error condition encountered or the type
of information being reported.

Category Meaning
COMVENT Inefficient programming practices.
NOTE Unusua programming style or the use of

outmoded statements.

CAUTI ON Possible user error. Cautions are issued when the
compiler detects a condition that may cause the
program to abort or behave unpredictably.

167

Cray C and C++ Reference Manual

168

Category Meaning

WARNI NG Probable user error. Indicates that the program
will probably abort or behave unpredictably.

ERROR Fatal error; that is, a serious error in the source
code. No binary output is produced.

| NTERNAL Problems in the compilation process. Please report
internal errors immediately to the system support
staff, so a Software Problem Report (SPR) can be
filed.

LIMT Compiler limits have been exceeded. Normally
you can modify the source code or environment
to avoid these errors. If limit errors cannot be
resolved by such modifications, please report these
errors to the system support staff, so that an SPR
can be filed.

I NFO Useful additional information about the compiled
program.

I NLI NE Information about inline code expansion
performed on the compiled code.

SCALAR Information about scalar optimizations performed
on the compiled code.

VECTOR Information about vectorization optimizations
performed on the compiled code.

OPTI M ZATI ON Information about general optimizations.

| PA_| NFO Information about interprocedural optimizations.

S-2179-71

Using the Compiler Message System [C]

C.4 Common System Messages

S-2179-71

The errorsin the following list can occur during the execution of a user program. The
operating system detects them and issues the appropriate message. These errors are
not detected by the compiler and are not unique to C and C++ programs; they may
occur in any application program written in any language.

Operand Range Error

An operand range error occurs when a program attemptsto load or storein an
area of memory that is not part of the user's area. This usually occurs when an
invalid pointer is dereferenced.

Program Range Error

A program range error occurs when a program attempts to jump into an area of
memory that is not part of the user'sarea. This may occur, for example, when a
function in the program mistakenly overwrites the internal program stack. When
this happens, the address of the function from which the function was called
islost. When the function attempts to return to the calling function, it jumps
elsawhere instead.

Error Exit

An error exit occurs when a program attempts to execute an invalid instruction.
This error usually occurs when the program'’s code area has been mistakenly
overwritten with words of data (for example, when the program storesin a
location pointed to by an invalid pointer).

169

Cray C and C++ Reference Manual

170 S-2179-71

Using Intrinsic Functions [D]

The C and C++ intrinsic functions either alow for direct access to some hardware
instructions or result in generation of inline code to perform some specialized
functions. These intrinsic functions are processed completely by the compiler. In
many cases, the generated code is one or two instructions. These are called functions
because they are invoked with the syntax of function calls.

To get access to the intrinsic functions, the Cray C++ compiler requires that

either thei ntri nsi cs. h file be included or that the intrinsic functions that

you want to call be explicitly declared. If the source code does not have an

i ntrinsics. h statement and you cannot modify the code, you can use the

-h prototype_intrinsics optioninstead. If you explicitly declare an
intrinsic function, the declaration must agree with the documentation or the
compiler treats the call asacall to anormal function, not the intrinsic function. The
-h nointrinsi cs command line option causes the compiler to treat these calls as
regular function calls and not as intrinsic function calls.

The types of the arguments to intrinsic functions are checked by the compiler, and if
any of the arguments do not have the correct type, awarning message is issued and
the call istreated as anormal call to an external function. If your intention wasto call
an external function with the same name as an intrinsic function, you should change
the external function name. The names used for the Cray C intrinsic functions arein
the name space reserved for the implementation.

Note: Severa of these intrinsic functions have both avector and a scalar version. If
avector version of an intrinsic function exists and the intrinsic is called within a

vectorized loop, the compiler uses the vector version of theintrinsic. For details on
whether it has a vector version, refer to the appropriate intrinsic function man page.

The following sections groups the C and C++ intrinsics according to function and
provides a brief description of each intrinsic in that group. For more information,
see the corresponding man page.

S-2179-71 171

Cray C and C++ Reference Manual

D.1 Bit Operations

The following intrinsic functions copy, count, or shift bits or computes the parity bit:

_dshiftl Move the left most n bits of an integer into the right side of another
integer, and return that integer.

_dshiftr Move the right most n bits of an integer into the left side of another
integer and return that integer.

_pbit Copies the rightmost bit of aword to the nt" bit, from the right, of
another word.

_pbits Copies the rightmost m bits of aword to another word beginning
at bit n.

_poppar Computes the parity bit for a variable.

_popcnt

_popcnt 32

_popcnt 64 Counts the number of set bitsin 32-bit and 64-bit integer words.

_l eadz

_l eadz32

_l eadz64 Counts the number of leading 0 bits in 32-bit and 64-bit integer
words.

_gbit _gbi t returnsthe value of the n bit from the right.

_gbits Returns a value consisting of mbits extracted from a variable,

beginning at n'" bit from the right.

D.2 Mask Operations

172

The following intrinsic functions create bit masks:

_mask Creates aleft-justified or right-justified bit mask with al bits set to 1.
_maskl Returns a left-justified bit mask with i bitsset to 1.
_maskr Returns aright-justified bit mask with i bits set to 1.

S-2179-71

Using Intrinsic Functions [D]

D.3 Miscellaneous Operations
The following intrinsic functions perform various functions:
_int_mult_upper

Multiplies integers and returns the uppermost bits. For more
information, seethei nt _rmul t _upper (3i) man page.

_ranf Computes a pseudo-random floating-point number ranging from 0.0
through 1.0.
_rtc Return areal-time clock value expressed in clock ticks.

S-2179-71 173

Cray C and C++ Reference Manual

174 S-2179-71

Glossary

S-2179-71

CLE
The operating system for Cray XT systems.

CNL

CNL isthe Cray XT and Cray X2 compute node kernel. CNL provides a set of
supported system calls. CNL provides many of the operating system functions
available through the service nodes, although some functionality has been removed to
improve performance and reduce memory usage by the system.

compute node

A node that runs application programs. A compute node performs only computation;
system services cannot run on compute nodes. Compute nodes run a specified kernel
to support either scalar or vector applications. See aso node; service node.

deferred implementation

The label used to introduce information about a feature that will not be implemented
until alater release.

login node

The service node that provides a user interface and services for compiling and
running applications.

node

For CLE systems, the logical group of processor(s), memory, and network
components acting as a network end point on the system interconnection network.

service node

A node that performs support functions for applications and system services. Service
nodes run SUSE LINUX and perform specialized functions. There are six types of
predefined service nodes: login, 10, network, boot, database, and syslog.

175

Cray C and C++ Reference Manual

system interconnection network
The high-speed network that handles all node-to-node data transfers.

176 S-2179-71

	Cray C and C++ Reference Manual
	New Features
	Introduction [1]
	1.1 General Compiler Description
	1.1.1 Cray C Compiler
	1.1.2 Cray C++ Compiler

	1.2 Related Publications

	Invoking the C and C++ Compilers [2]
	2.1 CC Command
	2.2 cc Command
	2.3 Command Line Options
	2.4 Standard Language Conformance Options
	2.4.1 -h [no]c99 (cc)
	2.4.2 -h [no]conform (CC, cc), -h [no]stdc (cc)
	2.4.3 -h cfront (CC)
	2.4.4 -h [no]parse_templates (CC)
	2.4.5 -h [no]dep_name (CC)
	2.4.6 -h [no]exceptions (CC)
	2.4.7 -h [no]anachronisms (CC)
	2.4.8 -h new_for_init (CC)
	2.4.9 -h [no]tolerant (cc)
	2.4.10 -h [no]const_string_literals (CC)
	2.4.11 -h [no]gnu

	2.5 Template Language Options
	2.5.1 -h simple_templates (CC)
	2.5.2 -h [no]autoinstantiate (CC)
	2.5.3 -h one_instantiation_per_object (CC)
	2.5.4 -h instantiation_dir=dirname (CC)
	2.5.5 -h instantiate=mode (CC)
	2.5.6 -h [no]implicitinclude (CC)
	2.5.7 -h remove_instantiation_flags (CC)
	2.5.8 -h prelink_local_copy (CC)
	2.5.9 -h prelink_copy_if_nonlocal (CC)

	2.6 Virtual Function Options
	2.6.1 -h forcevtbl (CC)
	2.6.2 -h suppressvtbl (CC)

	2.7 General Language Options
	2.7.1 -h keep=file (CC)
	2.7.2 -h restrict=args
	2.7.3 -h [no]calchars
	2.7.4 -h [no]signedshifts

	2.8 General Optimization Options
	2.8.1 -h [no]aggress
	2.8.2 -h [no]autothread
	2.8.3 -h display_opt
	2.8.4 -h [no]dwarf
	2.8.5 -h fusionn
	2.8.6 -h [no]intrinsics
	2.8.7 -h list
	2.8.8 -h [no]msgs
	2.8.9 -h [no]negmsgs
	2.8.10 -h [no]omp_trace
	2.8.11 -h [no]func_trace
	2.8.12 -h [no]overindex
	2.8.13 -h [no]pattern
	2.8.14 -h profile_generate
	2.8.15 -h threadn
	2.8.16 -h unrolln
	2.8.17 -O level

	2.9 Automatic Cache Management Options
	2.9.1 -h cachen

	2.10 Vector Optimization Options
	2.10.1 -h vectorn

	2.11 Inlining Optimization Options
	2.11.1 -h ipan
	2.11.2 -h ipafrom=source [source] ...
	2.11.3 Combined Inlining

	2.12 Scalar Optimization Options
	2.12.1 -h [no]interchange
	2.12.2 -h scalarn
	2.12.3 -h [no]zeroinc

	2.13 Math Options
	2.13.1 -h fpn
	2.13.2 -h matherror

	2.14 Debugging Options
	2.14.1 -G level and -g
	2.14.2 -h [no]bounds (cc)
	2.14.3 -h dir_check
	2.14.4 -h zero

	2.15 Compiler Message Options
	2.15.1 -h msglevel_n
	2.15.2 -h [no]message=n[:n...]
	2.15.3 -h report=args
	2.15.4 -h [no]abort
	2.15.5 -h errorlimit

	2.16 Compilation Phase Options
	2.16.1 -E
	2.16.2 -P
	2.16.3 -h feonly
	2.16.4 -S
	2.16.5 -c
	2.16.6 -#, -##, and -###
	2.16.7 -W phase,"opt ..."
	2.16.8 -Y phase,dirname

	2.17 Preprocessing Options
	2.17.1 -C
	2.17.2 -D macro[=def]
	2.17.3 -h [no]pragma=name[:name ...]
	2.17.4 -I incldir
	2.17.5 -M
	2.17.6 -nostdinc
	2.17.7 -U

	2.18 Loader Options
	2.18.1 -l libname
	2.18.2 -L ldir
	2.18.3 -o outfile

	2.19 Miscellaneous Options
	2.19.1 -h cpu=target_system
	2.19.2 -h ident=name
	2.19.3 -h keepfiles
	2.19.4 -h network=nic
	2.19.5 -h [no]omp
	2.19.6 -h prototype_intrinsics
	2.19.7 -h taskn
	2.19.8 -h [no]threadsafe
	2.19.9 -h upc (cc)
	2.19.10 -V
	2.19.11 -X npes

	2.20 Command Line Examples
	2.21 Compile Time Environment Variables
	2.22 Run Time Environment Variables
	2.23 OpenMP Environment Variables

	Using #pragma Directives [3]
	3.1 Protecting Directives
	3.2 Directives in Cray C++
	3.3 Loop Directives
	3.4 Alternative Directive Form: _Pragma
	3.5 General Directives
	3.5.1 [no]bounds Directive
	3.5.2 duplicate Directive
	3.5.3 message Directive
	3.5.4 cache Directive
	3.5.5 cache_nt Directive
	3.5.6 ident Directive
	3.5.7 [no]opt Directive
	3.5.8 autothread, noautothread Directives
	3.5.9 Probability Directives
	3.5.10 weak Directive

	3.6 Instantiation Directives
	3.7 Vectorization Directives
	3.7.1 hand_tuned Directive
	3.7.2 loop_info Directive
	3.7.3 loop_info prefer_thread, prefer_nothread Directives
	3.7.4 nopattern Directive
	3.7.5 novector Directive
	3.7.6 permutation Directive
	3.7.7 [no]pipeline Directive
	3.7.8 prefervector Directive
	3.7.9 pgo loop_info Directive
	3.7.10 safe_address Directive
	3.7.11 safe_conditional Directive
	3.7.12 shortloop and shortloop128 Directives

	3.8 Scalar Directives
	3.8.1 collapse and nocollapse Directives
	3.8.2 concurrent Directive
	3.8.3 interchange and nointerchange Directives
	3.8.4 noreduction Directive
	3.8.5 suppress Directive
	3.8.6 [no]unroll Directive
	3.8.7 [no]fusion Directive

	3.9 Inlining Directives
	3.9.1 clone_enable, clone_disable, clone_reset Directives
	3.9.2 inline_enable, inline_disable, and inline_reset Directives
	3.9.3 inline_always and inline_never Directives

	Using OpenMP [4]
	4.1 Deferred OpenMP Features
	4.2 Cray Implementation Differences
	4.2.1 Pragmas
	4.2.1.1 atomic Construct
	4.2.1.2 for Construct
	4.2.1.3 parallel Construct
	4.2.1.4 private Clause
	4.2.1.5 threadprivate Construct

	4.2.2 OpenMP Library Routines
	4.2.2.1 omp_get_max_active_levels()
	4.2.2.2 omp_set_dynamic()
	4.2.2.3 omp_set_schedule()
	4.2.2.4 omp_set_max_active_levels()
	4.2.2.5 omp_set_nested()
	4.2.2.6 omp_set_num_threads()

	4.2.3 OpenMP Environment Variables
	4.2.3.1 OMP_DYNAMIC
	4.2.3.2 OMP_MAX_ACTIVE_LEVELS
	4.2.3.3 OMP_NESTED
	4.2.3.4 OMP_NUM_THREADS
	4.2.3.5 OMP_SCHEDULE
	4.2.3.6 OMP_STACKSIZE
	4.2.3.7 OMP_THREAD_LIMIT
	4.2.3.8 OMP_WAIT_POLICY

	4.3 Compiler Options Affecting OpenMP
	4.4 OpenMP Program Execution

	Using Cray Unified Parallel C (UPC) [5]
	5.1 Cray Implementation Differences
	5.2 Compiling and Executing UPC Code

	Using Cray C++ Libraries [6]
	6.1 Unsupported Standard C++ Library Features

	Using Cray C++ Template Instantiation [7]
	7.1 Simple Instantiation
	7.2 Prelinker Instantiation
	7.3 Instantiation Modes
	7.4 One Instantiation Per Object File
	7.5 Instantiation #pragma Directives
	7.6 Implicit Inclusion

	Using Cray C Extensions [8]
	8.1 Complex Data Extensions
	8.2 fortran Keyword
	8.3 Hexadecimal Floating-point Constants

	Using Predefined Macros [9]
	9.1 Macros Required by the C and C++ Standards
	9.2 Macros Based on the Host Machine
	9.3 Macros Based on the Target Machine
	9.4 Macros Based on the Compiler
	9.5 UPC Predefined Macros

	Running C and C++ Applications [10]
	Debugging Cray C and C++ Code [11]
	11.1 TotalView Debugger
	11.2 Compiler Debugging Options

	Using Interlanguage Communication [12]
	12.1 Calls between C and C++ Functions
	12.2 Calling Fortran Functions and Subroutines from C or C++
	12.2.1 Requirements
	12.2.2 Argument Passing
	12.2.3 Array Storage
	12.2.4 Logical and Character Data
	12.2.5 Accessing Named Common from C and C++
	12.2.6 Accessing Blank Common from C or C++
	12.2.7 Cray C and Fortran Example
	12.2.8 Calling a Fortran Program from Cray C++

	12.3 Calling a C or C++ Function from Fortran

	Implementation-defined Behavior [13]
	13.1 Messages
	13.2 Environment
	13.2.1 Identifiers
	13.2.2 Types
	13.2.3 Characters
	13.2.4 Wide Characters
	13.2.5 Integers
	13.2.6 Arrays and Pointers
	13.2.7 Registers
	13.2.8 Classes, Structures, Unions, Enumerations, and Bit Fields
	13.2.9 Qualifiers
	13.2.10 Declarators
	13.2.11 Statements
	13.2.12 Exceptions
	13.2.13 System Function Calls

	13.3 Preprocessing

	Using Libraries and the Loader [A]
	A.1 Cray C and C++ Libraries
	A.2 Loader

	Using Cray C and C++ Dialects [B]
	B.1 C++ Language Conformance
	B.1.1 Unsupported C++ Language Features
	B.1.2 Supported C++ Language Features

	B.2 C++ Anachronisms Accepted
	B.3 Extensions Accepted in Normal C++ Mode
	B.4 Extensions Accepted in C or C++ Mode
	B.5 C++ Extensions Accepted in cfront Compatibility Mode

	Using the Compiler Message System [C]
	C.1 Expanding Messages with the explain Command
	C.2 Controlling the Use of Messages
	C.2.1 Command Line Options
	C.2.2 Environment Options for Messages
	C.2.3 ORIG_CMD_NAME Environment Variable

	C.3 Message Severity
	C.4 Common System Messages

	Using Intrinsic Functions [D]
	D.1 Bit Operations
	D.2 Mask Operations
	D.3 Miscellaneous Operations

	Glossary
	List of Examples
	Example 1. CC -X8 -h instantiate=all myprog.C
	Example 2. CC -h conform -h noautoinstantiate myprog.C
	Example 3. cc -c -h ipa1 myprog.c subprog.c
	Example 4. cc -I. disc.c vend.c
	Example 5. cc -P -D DEBUG newprog.c
	Example 6. cc -c -h report=s mydata1.c
	Example 7. CC -h ipa5,report=if myfile.C
	Example 8. Trip counts
	Example 9. Unrolling outer loops
	Example 10. Illegal unrolling of outer loops
	Example 11. Using the inline_enable, inline_disable, and inline_
	Example 12. Using inline_reset
	Example 13. UPC and THREADS defined dynamically
	Example 14. UPC and THREADS defined statically
	Example 15. Calling a C function from Fortran

	List of Tables
	Table 1. GCC C Language Extensions
	Table 2. GCC C++ Language Extensions
	Table 3. -h Option Descriptions
	Table 4. Cache Levels
	Table 5. Automatic Inlining Specifications
	Table 6. File Types
	Table 7. Floating-point Optimization Levels
	Table 8. -G level Definitions
	Table 9. -W phase Definitions
	Table 10. -Y phase Definitions
	Table 11. -h pragma Directive Processing
	Table 12. Data Type Mapping
	Table 13. Packed Characters
	Table 14. Unrecognizable Escape Sequences

